
Funded by NSF grants CSR-1814739, CNS-17653503, and CNS-2229290, and NASA grant 80NSSC21K1741

Priority-Based Concurrency and Shared Resource Access
Mechanisms for Nested Intercomponent Requests in CAmkES

Marion Sudvarg (msudvarg@wustl.edu)
Zhuoran Sun, Ao Li, Chris Gill, Ning Zhang

Accepted for publication in the Springer Real-Time Systems Journal
Preprint available at www.sudvarg.com/priority-aware-camkes

Overview
The seL4 microkernel is a formally verified, capability-based, lightweight
microkernel that supports real-time and mixed-criticality systems.
CAmkES provides a component description language and middleware
layer atop seL4. Task execution across components should be prioritized
appropriately end-to-end. However, CAmkES component interfaces are
bound to threads that execute at fixed priorities provided at compile-time
in the component specification. We present a new library for CAmkES
with a thread model that supports multiple concurrent requests to the
same component endpoint. It provides propagation and enforcement of
priority metadata, such that those requests are appropriately prioritized.
It allows enables priority-based locking (including nested locking) via:

• Non-Preemptive Critical Sections (NPCS)
• The Immediate Priority Ceiling Protocol (IPCP)
• The Priority Inheritance Protocol (PIP)

Component-
Based Design

Diagram courtesy https://docs.sel4.systems/projects/camkes/visual-camkes/VisualCAmkES_Layout_Example.png

• Components encapsulate and isolate state and functionality
• Provides structure, modularity, reusability
• Components define explicit interfaces for communication

and control flow

Real-Time Component-Based Systems
Some components originate
timer or event-based tasks

Some components provide
common functionality or

shared resources

Tasks execute end-to-end across components
via synchronous RPC invocations

CAmkES
Component Architecture for microkernel-based Embedded Systems

Component description language and middleware framework for seL4

1 AComponent Procedure
Interface (CPI)

Uses
CPI

Provides
CPI

seL4
endpoint

single thread at
static priority

Problem: Tasks of different priorities may
concurrently send requests to the same CPI!

seL4
Image courtesy of Boeing: https://www.boeing.com/defense/unmanned-little-bird-h-6u/

Formally verified,
capability-based,

lightweight microkernel

Supports real-time and
mixed-criticality systems

Provides resilience
for real-world

systems (e.g., the
Boeing Unmanned

Little Bird H-6U)

Components Encapsulate

Shared Resources

Components may encapsulate critical sections of exclusive (locked) access
to a shared resource

Shared Functionality

Components may need to support multiple concurrent requests to thread
safe, reentrant functionality.

• Component thread assigned
highest system priority (255)

• (Under RR scheduling, tasks
restricted to priorities 0-254)

Intel Xeon Gold 6130 Raspberry Pi 3 Model B+

min max mean std min max mean std

Call, built-in 2478 4568 2528 211 563 3359 619 278

Reply, built-in 2494 2836 2519 34 416 1298 449 86

Call, fixed 3178 4810 3306 189 834 2591 1010 179

Reply, fixed 2590 3342 2659 142 422 954 466 94

Call, propagated 4348 6830 4574 287 2085 5516 2368 351

Reply, propagated 3536 3960 3567 41 1606 2335 1694 76

Call, inherited, unlocked 4344 6834 4625 288 1935 5381 2226 335

Call, inherited, locked 4372 6282 4603 245 1966 5052 2242 314

Reply, inherited, unlocked 3520 4028 3549 50 1483 2095 1531 65

Reply, inherited, locked 3514 3788 3547 28 1470 2319 1531 96

Call, PIP to PIP 5364 6878 5618 240 3079 5696 3355 279

Reply, PIP to PIP 5402 6300 5462 89 2898 4109 3019 121

Nest, PIP to PIP 5144 6720 5346 303 1175 3315 1844 446

Call, PIP to propagated 5292 6306 5539 196 3165 6068 3452 308

Reply, PIP to propagated 4558 5318 4679 130 2563 3552 2668 98

Nest, PIP to propagated 6068 7530 6385 243 1838 5088 2243 351

Pi 3B+ (ARMv8 Cortex-A53)Intel Xeon Gold 6130

Insert and Remove from Notification Manager

• Thread executes at priority ceiling of
possible requestors

• (Under RR scheduling, tasks restricted
to even priorities, IPCP component
restricted to odd priorities)

NPCS1
Critical section executes

nonpreemptively

IPCP2
Critical section cannot be preempted
by task with lower priority than any

task that can request it

PIP3
• Critical section executes at highest priority among waiting requestors
• Multiple threads (one per possible requestor) wait on endpoint at

priority ceiling to receive new requests
• Priority passed with request message
• If unlocked, handling thread sets locked then reduces its priority to that

of requestor
• If locked, handling thread elevates priority of thread with lock then waits

in userspace priority queue (Notification Manager)
• Once request is complete, notification sent to thread at head of queue

Priority Propagation4
• Multiple threads (one per possible requestor) wait on endpoint at

priority ceiling to receive new requests
• Priority passed with request message
• Handling thread reduces its priority to that of requestor
• This allows multiple concurrent requests to be handled at corresponding

task’s priority

Nested Dependencies
A shared service/resource component may send further downstream

requests, e.g., to allow a locked region to request shared functionality or
to enable nested locking.

1
A

2
B

PIP PIP

Challenge: Inherited priorities must be propagated to any
downstream components handling a request

Solution: PIP and priority propagation CPIs provide an additional function to receive nested priority inheritance updates

Advantages
• Framework now supports nested requests from CPIs implementing PIP
• Nested locking and nested priority propagation are possible
• Even with long request chains, a component needs to only notify the

next downstream component
• Uses priority-based locking semantics – no additional atomic

operations necessary in userspace framework, bounding overheads

Caveats
• Additional thread required on CPI endpoint to received nested priority

inheritance updates
• Requires minor changes to existing CAmkES component system

descriptions to specify which protocol a CPI uses, and to track which CPI
is invoking a downstream component’s functionality

• Nested PIP does not support round-robin scheduling of threads with
equal priorities (requires traditional fixed-priority preemptive scheduling)

Overheads Associated with Framework
Intercomponent Requests

Testing Synthetic Tasksets

Configuration CPI C CPI D CPI E

1 PIP Propagation PIP

2 PIP Propagation Propagation

3 IPCP PIP Propagation

4 IPCP Propagation PIP

• 10 task systems of each configuration at
each total utilization 0.1-1.0

• Utilizations split using UUniSort
• Root dispatcher releases system dispatchers

sequentially
• Each system dispatcher releases tasks

within one task system for 10 hyperperiods
• No deadlines missed!

Conclusions

• New framework for CAmkES supports
priority propagation, NPCS, IPCP, and PIP

• Extensions to framework support nested PIP
• Priority-based lock semantics do not need

additional atomic operations
• These extensions allow CAmkES to provide

suitable end-to-end timing guarantees for real-time systems
• We will extend to support asynchronous event notifications
• We intend to modify the CAmkES parser to automatically add

priority and task identifier metadata to RPC request messages

Both implemented by binding a single thread with static priority to
component procedure interface’s underlying endpoint

Priority Propagation Priority Inheritance Protocol

	Slide Number 1

