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ABSTRACT
FPGAs are widely deployed on high-energy astrophysics telescopes
to preprocess and reduce sensor data read out by front-end elec-
tronics. Across instruments, these computational pipelines have
similar semantics, sharing common stages such as pedestal sub-
traction, signal integration, zero-suppression, island detection, and
centroiding. However, diverse telescope designs require unique im-
plementations of these algorithms, and the logic is often rewritten
from scratch for a new instrument.

As an alternative, High-Level Synthesis (HLS) tools enable these
algorithms to be implemented in a high-level language, which
eases modifications and enables fast prototyping and deployment.
Nonetheless, writing performant HLS code requires augmentation
of the code with compiler-specific pragmas. In this work, we il-
lustrate these challenges in the context of the Advanced Particle-
astrophysics Telescope (APT), a proposed space-based observatory
for gamma-ray sources, and its Antarctic Demonstrator (ADAPT).
We implement its front-end algorithms using HLS, demonstrate the
use of pragmas to enable optimizations, then explore speed and
area tradeoffs, which are especially important given the limited
power budget afforded by a satellite instrument. We demonstrate
that with HLS, ADAPT will be able to process scintillating tile data
from 200 000 gamma-ray events per second.
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1 INTRODUCTION
High-Level Synthesis (HLS) is an approach to expressing hard-
ware designs at a conceptual level higher than that of traditional
register-transfer level descriptions. Rather than using a hardware
description language such as Verilog or VHDL, the designer ex-
presses the algorithm to be implemented in a high-level language
such as C. While the concept is not new, e.g., Streams-C [12] and
ROCCC [27] were published two decades ago, the manufacturers
of FPGAs have made HLS compilers available commercially only
recently. The availability of the tools, however, has not alleviated
the challenge of producing performant designs [11, 17, 34, 35, 46].

Currently, when authoring an application using HLS, the lan-
guage(s) typically used include C, C++, OpenCL, and others; how-
ever, invariably they are augmented with additional information
to assist the compiler/synthesis suite, often in the form of pragma
directives. Sohrabizadeh et al. [35] describe a convolutional neural
network implemented in 24 lines of simple HLS code that runs
80× slower than a single thread on an individual processor core.
After inserting 28 pragmas, it speeds up 7000×. Of note, many of
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these pragma statements are articulating guidance to the tools that
is commonly accomplished automatically in the software context,
e.g., unrolling loops. This example illustrates the challenge before
us: the number of pragmas used to achieve the best performance
exceeds the number of lines of code in the initial implementation.
In addition, this orders of magnitude performance variability is
based not on the core algorithm used to solve the problem, but
rather on the low-level specifics of how it is expressed for the HLS
compiler/synthesis tool suite.

Nonetheless, HLS enables rapid prototyping and deployment
of hardware logic, making it an attractive option for accelerating
many applications. Furthermore, it has the potential to make code
more readable, maintainable, and portable across functionally dif-
ferent applications of semantically similar algorithms or processes.
For example, several high-energy detector instruments used in as-
trophysics have similar front-end data preprocessing and reduction
steps that benefit from acceleration on FPGAs, which can pro-
vide substantial improvements in size, weight, and power (SWaP)
relative to traditional processors. This is especially important in
space-based deployments, which are highly SWaP-constrained.

While instruments differ in size, layout, sampling rates, etc.,
these algorithms remain largely the same. HLS therefore may lower
the barrier toward implementation for such instruments if suitable
performance can be achieved. In this paper, we report on our ex-
perience using HLS to implement portions of the computational
science pipeline onboard APT, a future space-borne, gamma-ray
telescope. We describe the initial design efforts, subsequent opti-
mizations, and alternative implementations with an eye toward
speed/area tradeoffs that can be exploited in the design. While an
initial naïve implementation takes over 15 ms to process a single
event, with the addition of several pragma directives and several
other HLS-specific optimizations, we can achieve a 3415× speedup
without overutilizing the FPGA, enabling processing of over 200 000
gamma-ray events per second.

2 RELATEDWORK
A substantial body of recent work has explored performance op-
timization of arbitrary applications implemented on FPGAs us-
ing HLS. Examples include the empirically driven approach of
Sanaullah et al. [33]; constraining the application set to a specific do-
main (e.g., nested loops by Zhong et al. [47], CNNs by Sohrabizadeh
et al. [35], or GNNs by Zhao et al. [45]); the use of multi-level
intermediate compiler representations by Ye et al. [44]; and the
exploitation of an affine type system for compile-time analysis [29].
Much of the above work is motivated by the fact that application de-
velopers are required to annotate their codewith compiler directives
to achieve acceptable performance, and performance variability be-
tween an initial implementation and an optimized implementation
can be several orders of magnitude [11, 35] — this is true for our
application as well.

There has been significant progress in making FPGAs avail-
able for space-borne missions in recent years [32, 36], including
the RT Kintex [19, 41], SQR Versal [31], and the European NG-
MEDIUM [23] and NG-LARGE [20] FPGAs. This has motivated
the study of applications and deployment techniques. For example,

Figure 1: Left: a telescope captures optical Cherenkov radia-
tion from a high-energy particle in the atmosphere. Right:
an interaction causes a detector’s scintillator to glow.

Lattuada et al. [18] describe an approach to managing data move-
ment automatically. Li et al. [22] developed an FPGA-based CubeSat
attitude control system. Menon et al. [25] compare and contrast
multispectral sensing algorithms for a CubeSat on traditional pro-
cessor cores, graphics engines, and FPGAs, showing significant
performance benefits for HLS-expressed FPGA implementations.

CubeSat applications are primarily affected by transient bit-flips,
rather than long-term radiation damage that might affect a satellite
beyond LEO. However, in this work, we are not investigating the
suitability or hardening of FPGAs for use in space. Rather, we are fo-
cused on assessing whether (or not) HLS techniques are sufficiently
mature for use in developing the applications that are commonly
required in space-based missions. Janson and Kebschull [16] used
HLS to specify a range of computational kernels that are commonly
used in detector applications, and they give positive results on both
speed and area consumption for the set of kernels that they deploy.
Their kernels interact in a dataflow pipeline, which is one of the
performance optimizations that we pursue.

3 APPLICATION DESCRIPTION
3.1 Front-End Computation for Telescopes
This paper considers the problem of front-end data reduction and
preprocessing for astrophysics instruments. In particular, we con-
sider telescopes like those illustrated in Fig. 1 that measure optical
light emitted from high-energy particle interactions, either in the
atmosphere (as in imaging atmospheric Cherenkov telescopes such
as VERITAS [13, 42] and CTA [8, 10]) or in scintillators in the
instrument itself (e.g., COSI [7] and APT [4]).

Many such instruments capture this light using arrays of photo-
multiplier tubes (PMTs) or silicon photomultipliers (SiPMs) which
produce electrical current when struck by an optical photon. Signals
from each “pixel” in the array are read by analog waveform digitiz-
ers, such as the TARGET [3] or NECTAr0 [9] ASICs. Typically, such
ASICs sample continuously into a ring buffer composed of analog
memory cells; when triggered by a high-energy interaction, the
ASIC digitizes and outputs each sampled charge value. To enable
back-end analysis according to the instrument’s science goals, a
front-end computational pipeline preprocesses and reduces this
output data to extract high-level information about the interaction,
e.g., position and energy. Common pipeline stages include:
1. Pedestal Subtraction. The capacitive charge pedestal from the
ASIC’s analog memory cells must be subtracted from its digitized
readouts to obtain the true sampled signal values.
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Figure 2: Left: an island of signals detected in a 2D pixel array
(e.g., for CTA [5]). Right: an island of signals detected in a 1D
pixel array (e.g., for ADAPT [38]).

Figure 3: A rendering of the APT instrument [4].

2. Signal Integration. To infer the number of photons captured
by each pixel, shaped waveforms from individual photoelectron
outputs, or aggregate outputs across multiple scintillation photons
captured by a single pixel, are integrated by summing over the
digitized output values. Waveform digitizers typically sample 1–
10 ns windows; to capture a significant portion of the arrival curve
may require integrating a hundred or more samples per pixel.
3. Zero-Suppression. Sampling noise — e.g., RMS noise from the
preamplifiers that shape the PMT or SiPM output prior to capture
by the digitizer ASIC [1] or dark counts from SiPMs [30] — may
yield positive integrated signal values even for pixels that did not
actually capture optical photons. Zero-suppression takes integral
values below some configurable threshold and sets them to zero.
4. Island Detection. After zero-suppression, clusters of adjacent
pixels with positive integrals are grouped into islands, as illustrated
in Fig. 2. These typically correspond to a single interaction.
5. Centroiding. Total signal contribution and the signal-weighted
mean over pixel positions in an island constitute a centroid, from
which interaction energy and position can be inferred.

3.2 Target Instruments: APT and ADAPT
The Advanced Particle-astrophysics Telescope (APT) [4] (illustrated
in Fig. 3) is a concept space-based observatory designed for high-
energy gamma-ray and and cosmic-ray observations. It will be
deployed in a Sun-Earth Lagrange L2 orbit, where obscuration of
the sky by the earth is minimized, affording it a nearly full-sky
field of view. It may achieve an order-of-magnitude improvement
in gamma-ray burst (GRB) observational sensitivity compared with
the Fermi Gamma-ray Space Telescope, launched in 2008 [24]. To
support multi-wavelength and multi-messenger astrophysics [2, 26,
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Figure 4: Photons fromADAPT’s scintillators are transported
by optical fibers to SiPMs forming 1D pixel arrays [4].

28], APT will detect and localize GRBs in real time [40], directing
follow-up instruments to observe GRBs across broad ranges of
wavelengths and emission modalities.

To meet these requirements, APT will fly with onboard computa-
tional hardware, including FPGAs to accelerate preprocessing and
reduction of sensor data. Components of its pipeline, from front-
end electronics and ASICs to FPGAs and an analysis CPU, have
been discussed in [6, 14, 15, 37–40, 43]. The Antarctic Demonstrator
for APT (ADAPT) is a prototype high-altitude balloon mission in
advanced development, and is scheduled to fly during the 2025–26
season. ADAPT will demonstrate, at a smaller-scale, the design of
the APT instrument as well as its computational capabilities.

ADAPT has 4 layers of sodium-doped cesium iodide (CsI:Na) scin-
tillating crystal tiles. Optical photons produced by energy deposits
in the crystals (e.g., from gamma-ray photons as they Compton
scatter within the instrument) are captured by perpendicular arrays
of optical fibers running across the top and bottom surfaces of each
tile and terminated at one end with SiPMs, as illustrated in Fig. 4.
These form the 1-dimensional pixel arrays illustrated in the right
side of Fig. 2, allowing precise localization of interactions in the
crystals along both the x- and y-axes.

Each layer-axis has 225 optical fibers multiplexed into 80 readout
channels captured by ALPHA-series waveform digitizer ASICs [38].
The ALPHA has 16 input channels, requiring 5 ALPHAs per layer-
axis, or 40 total, to handle the optical fibers. Each channel reads
10 ns samples into a ring buffer of 256 analog memory cells — at
2.56 𝜇s total, this captures up to 98% of the CsI:Na tile’s scintillation.
When sufficient energy is detected, the ALPHAs are simultaneously
triggered, digitizing and reading out to an FPGA.

A single ALPHA data packet consists of an 8-word header, 4096
digitized sample words (16 channels × 256 samples), then a stop
word. Of particular significance to the algorithms described in § 4,
the header includes (among other data) the following fields:
• bank: Which of the two analog memory banks were read out.
• fine_time: The sample number (current write position in the
ring buffer) when the trigger arrives.

• starting_sample: The number of the first sample listed in the
output data packet.
In the current planned configuration (Fig. 5), a single FPGA will

perform pedestal subtraction, signal integration, zero-suppression,
and island detection across outputs from the 5 ALPHAs for a sin-
gle layer-axis (labeled X-FPGA and Y-FPGA in the figure). Another
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Figure 5: Block diagram of one layer.

FPGA (labeled Centroid-FPGA) will perform centroiding and event
building across an entire layer, requiring a total of 12 FPGAs for
ADAPT.1 In the later sections, we synthesize logic for the front-end
computational pipeline targeting an embedded Kintex 7 FPGA; it
will be used on the ADAPT balloon instrument [38], and its small
footprint and low power requirements make it suitably representa-
tive for what might fly aboard the future space-based APT.

4 ALGORITHM DESIGNWITH HLS
This section details ADAPT’s data preprocessing and reduction
algorithms. We present naïve implementations, as might be written
in C++ by a developer lacking deeper familiarity with the underly-
ing hardware logic and HLS-specific pragmas and design patterns.
We evaluate their area and speed requirements when synthesized
for a Kintex 7 FPGA, demonstrating that they are not sufficiently
optimized for deployment on a space-borne instrument.

4.1 Naïve Algorithms
1. Pedestal Subtraction. Pedestal values are unique to each analog
memory cell; these are stored as 16-bit unsigned values in Block
RAM (BRAM) on the FPGA. Each ALPHA has 8192 memory cells
(2 banks, 16 channels, 256 samples each), requiring 128 Kib total.

The naïve ped_subtract function is shown in Listing 1. It takes
pointers to the ALPHA data packet and pedestal value array, plus
the ALPHA index a. Because the ALPHA begins readout from the
starting_sample, an appropriate offset into the pedestal array has
to be calculated in line 3 . The function iterates over samples and
channels, subtracting the pedestal from the corresponding sample
value, and writes the result into another array for signal integration.

Listing 1: Naïve Implementation of Pedestal Subtraction
1 void ped_subtract(Packet *pkt , unsigned *peds , unsigned a) {

2 for (unsigned s = 0; s < NUM_SAMPLES; ++s) {

3 unsigned idx = (pkt ->starting_sample + s) % NUM_SAMPLES;

4 for (unsigned c = 0; c < NUM_CHANNELS; ++c) {

5 unsigned ped_idx = pkt ->bank * NUM_SAMPLES * NUM_CHANNELS +

6 idx * NUM_CHANNELS + c;

7 results[a][s][c] = pkt ->samples[s][c] - peds[ped_idx ];

8 } } }

2. Signal Integration. Our implementation computes four inte-
grals with configurable bounds to capture different portions of
1Additional ALPHA ASICs and FPGAs to handle the edge detectors, tail counters, and
scintillating fiber trackers described in [38] are outside the scope of this work.
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Figure 6: Portions of the waveform captured by integration.

the waveform, e.g., fast and slow components of the signal, initial
pedestal values, and the complete waveform, as illustrated in Fig. 6.

The naïve integrate function is shown in Listing 2. It iterates
over pedestal-subtracted sample values, checks if the sample is
within the bounds defined by each integral, and if so, adds it to the
corresponding integrated value in an output array. Integral bounds
are defined with respect to the triggering time, i.e., when energy
was deposited into the detector by an interacting particle. As such,
3 the fine_time and starting_sample from the packet header
are used to calculate a sample number offset. If 4 the offset is
negative, this implies that the trigger arrived near enough to the
0-index sample of the ring buffer that the earlier starting_sample
“wrapped around” to a higher value, so the offset is adjusted ac-
cordingly.2 A time sample is captured by an integral if either 11
the (offset) sample number is within the bounds or 12 the start-
ing bound is negative and the (offset) sample number exceeds the
corresponding index in the ring buffer.

Listing 2: Naïve Implementation of Signal Integration
1 void integrate(Packet *pkt , int *bounds ,

2 int *integrals , unsigned a) {

3 int offst = pkt ->fine_time - pkt ->starting_sample;

4 if (offst < 0) offst += NUM_SAMPLES;

5 for (int s = 0; s < NUM_SAMPLES; ++s) {

6 int x = s - offst;

7 for (unsigned c = 0; c < NUM_CHANNELS; ++c) {

8 for (unsigned i = 0; i < NUM_INTEGRALS; ++i) {

9 int start = bounds [2*i];

10 int end = bounds [2*i+1];

11 if( (x >= start && x <= end) ||

12 (x - NUM_SAMPLES) >= start ) {

13 integrals[i*NUM_CHANNELS+c] += ped_sub_results[a][s][c];

14 } } } } }

3. Zero-Suppression.Our naïve implementation of zero-suppression
is shown in Listing 3. The zero_suppress function takes pointers
to the output integrals and an array of threshold values, one for
each integral. Any integral value that is less than the corresponding
threshold is set to 0. For ADAPT, only one of the four integrals is
likely to be used for island detection and centroiding [38]. However,
to remain flexible, we apply zero-suppression to all four integral
values; a sufficiently large negative threshold will effectively not
suppress values for the corresponding integral.
4. Island Detection. Island detection identifies sequences of ad-
jacent channels with non-zero (i.e., above the zero-suppression
2This logic assumes that the ALPHA begins reading out from an earlier sample than
the one that was active when the trigger arrived.
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Listing 3: Naïve Implementation of Zero-Suppression
1 void zero_suppress(int *integrals , int *thresholds) {

2 for(unsigned i = 0; i < NUM_INTEGRALS; ++i) {

3 for(unsigned c = 0; c < NUM_CHANNELS; ++c) {

4 if(integrals[i * NUM_CHANNELS + c] < thresholds[i]) {

5 integrals[i * NUM_CHANNELS + c] = 0;

6 } } } }

threshold) integrated signal values. This is performed across an
entire axial array of optical fiber signals, requiring the outputs of
zero-suppression from five ALPHA data packets to be merged; our
implementation uses only the integrated signal values from the
first of the four sets of bounds. In [14], the authors note that for
ADAPT, background radiation of the Earth’s limb may contribute
to significant uncertainty in GRB localization, but that this is miti-
gated by discarding events with multiple interactions in a single
detector layer. This allows a simplified approach that only identifies
the number of islands, rather than reporting their regions.

Our naïve implementation of count_islands is outlined in List-
ing 4. A flag, in_island, tracks whether it is currently in an island,
and a counter, num_islands tracks the number of islands identified.
In line 8 , if the current integrated signal value is positive and the
function is not already in an island, then a new island is identified.
If, however, 12 the signal value is zero and the function is in an
island, 13 the flag is set to false. The function returns the count to
be used by centroiding.

Listing 4: Naïve Implementation of Island Detection
1 int count_islands(int *integrals , unsigned int_num) {

2 bool in_island = 0;

3 int num_islands = 0;

4 for (unsigned a = 0; a < NUM_ALPHAS; ++a) {

5 for (unsigned c = 0; c < NUM_CHANNELS; ++c) {

6 unsigned idx = a * NUM_INTEGRALS * NUM_CHANNELS +

7 int_num * NUM_CHANNELS + c;

8 if(integrals[idx] && !in_island) {

9 in_island = true;

10 ++ num_islands;

11 }

12 else if (! integrals[idx] && in_island) {

13 in_island = false;

14 } } }

15 return num_islands;

16 }

5. Centroiding. Our implementation of island detection returns
only an island count and not the boundaries. This is because, as
mentioned above, ADAPT may discard events with more than two
interactions in a single layer. Our implementation therefore only
performs centroiding if a single island has been detected, and cen-
troiding a single island is equivalent to centroiding over the entire
array of integrated signal values, as values outside of the island
are zero. This simple implementation also has the advantage of
predictable timing, as the multiply-accumulate logic does not have
to be performed over an array of variable length.

A naïve centroid is shown in Listing 5, taking pointers to a
Centroid data structure and the output integrals, as well as the
integral number to consider. The Centroid structure encodes two
unsigned values: pos is the centroid position and sig is the total
integrated signal. If the number of islands returned by a call to
count_islands is 1, then centroid computes each channel’s con-
tribution to the signal-weighted centroid position and total signal.

Listing 5: Naïve Implementation of Centroiding
1 int centroid(Centroid *centr , int *integrals , unsigned int_num) {

2 int count = count_islands(integrals , int_num);

3 if (count == 1) {

4 for (unsigned a = 0; a < NUM_ALPHAS; ++a) {

5 for (unsigned c = 0; c < NUM_CHANNELS; ++c) {

6 unsigned pos = a * NUM_CHANNELS + c;

7 unsigned idx = a * NUM_INTEGRALS * NUM_CHANNELS +

8 int_num * NUM_CHANNELS + c;

9 centr ->pos += pos * integrals[idx];

10 centr ->sig += integrals[idx];

11 } }

12 centr ->pos /= centr ->sig;

13 }

14 return count;

15 }

4.2 Synthesis Results
Experimental Setup. We synthesize ADAPT’s data preprocess-
ing and reduction algorithms exactly as written in § 4.1 into a
single FPGA kernel.3 We use Vitis HLS version 2021.1, targeting
the Kintex-7 KC 705 evaluation platform (XC7K325T) to match the
embedded FPGA that will fly aboard the ADAPT balloon instru-
ment [38], applying a conservative 10 ns clock cycle to account for
the likely constrained power budget of a future large space-based
instrument. We implement a C++ testbench to provide representa-
tive input data packets (as described in § 3.2) and pedestal values
to each of the 5 ALPHA ASICs, as well as integral bounds and
zero-suppression thresholds. The testbench additionally retrieves
the integrated signal values and centroid data to verify functional
correctness. Inputs and outputs between the testbench and FPGA
kernel are implemented as AXI interfaces.

The top-level function is reflected in Listing 6. It calculates offsets
into the input pedestal array and output integral array for each
ALPHA. It then sequentially calls pedestal subtraction, integration,
zero-suppression, and centroiding. Results of pedestal subtraction
(to be used by signal integration) are stored in a global array.

Listing 6: Top-Level Function for Naïve Implementation
1 void top (...) {

2 for (unsigned alpha = 0; alpha < NUM_ALPHAS; ++alpha) {

3 unsigned ped_offst = alpha * 2 * NUM_SAMPLES * NUM_CHANNELS;

4 unsigned int_offst = alpha * NUM_INTEGRALS * NUM_CHANNELS;

5 ped_subtract(pkts + alpha , peds + ped_offst , alpha);

6 integrate(pkts + alpha , bounds , integrals + int_offst , alpha);

7 zero_suppress(integrals + int_offst , thresholds);

8 centroid_out ->count = centroid(centroid_out , integrals , 3);

9 } }

Summary of Results. Synthesis and C/RTL co-simulation results
are shown in row 0. Naïve of Table 1. Latency from co-simulation
and the initiation interval (II) reported by synthesis are listed in
cycles. The number of BRAM blocks, DSP slices, flip-flops (FFs),
and LUTs used (and their percent utilization) are also listed. The
naïve implementation incurs a substantial II (>106 clock cycles)
and a latency of over 15 ms. Given that from a single GRB, tens of
thousands of gamma-rays may interact with the larger space-based
APT every second, this implementation is not fast enough for the
instrument’s intended science goals.

3Though centroiding will likely be performed on a separate FPGA, our purpose is to
explore the performance and optimization of an HLS-based application. Synthesizing
for a single FPGA provides an illustrative proof-of-concept that is easier to follow.
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Table 1: Results as reported by Vitis HLS.

Implementation Latency II BRAM % DSP % FF % LUT %
0. Naïve 1 502 829 1 254 924 92 10 15 1 9 645 2 15 667 7
1. Functional Baseline 1 399 745 1 254 840 48 5 15 1 6 734 1 12 010 5
2. HLS Optimizations 40 056 22 412 48 5 43 43 91 255 22 95 582 46
3. Dataflow Pipelining 440 299 668 75 15 1 44 345 10 88 148 43
4. Consecutive Channel Island Detection 440 299 668 75 15 1 44 417 10 88 417 43
5. Prefix Sum Integrals 443 302 813 91 15 1 36 160 8 63 868 31
6. Sequential ALPHA Execution 6 189 5 071 376 42 15 1 25 256 6 50 949 24

Moreover, the results of signal integration reported by the test-
bench after C/RTL co-simulation differ from the true results due to
corruption of pedestal values during kernel execution.
Functional Baseline. To resolve the functional issues and provide
a baseline against which to compare HLS-specific optimizations,
we modify the kernel code by using explicit numerical typing, i.e.,
replacing int types with intx_t, where x is one of 8, 16, or 32
(and similarly for unsigned). In addition to using fewer resources,
this also resolves the corruption issue reported above. Furthermore,
whereas ALPHA packets will arrive over an external interface,
pedestal values, integral bounds, and zero-suppression thresholds
may already be stored in local BRAM. Therefore, we change these
testbench interfaces in the kernel code to type=bram.

Results are listed in row 1. Functional Baseline of Table 1. We
observe that resource utilization, II, and simulated latency all de-
crease. However, the speedup is very minor (only 7%), highlighting
the necessity of further performance optimization.

5 PERFORMANCE OPTIMIZATIONS
In this section, we explore and evaluate several HLS-specific per-
formance optimizations. We begin by considering changes to data
access patterns and loop ordering to minimize reads across AXI
interfaces and to enable pipelining and loop unrolling. We then ob-
serve that the ALPHA data packet encodes a Samples×Channels
matrix of digitized values that streams into the FPGA, and that
pedestal subtraction and integration iterate over the sample index
first. By vectorizing across channels, we can implement efficient
dataflow pipelining to allow each stage of computation to execute
as data becomes available from the prior stage.

5.1 Minor HLS-Specific Optimizations
We begin the optimization process by considering the hardware-
level implications of the naïve algorithms as written. We make
minor code changes and add pragmas to exploit parallelism and ad-
dress dependency issues without significant restructuring. Changes
are based on the following observations.
Data transfer across AXI interfaces is slow. However, our naïve
implementation performs frequent reads and writes across these
interfaces. For example, ped_subtract reads data from the packet
header in each loop iteration, and the output integral array is used
to store intermediate results between integration, zero-suppression,
island detection, and centroiding.

To optimize access, we add global variables to enable efficient
BRAM-based data storage: an array holds results from integration,
the output of zero-suppression is stored in a separate array to enable

improved pipelining, and a variable stores the centroid information.
We add an additional function to the end of our top-level kernel
function to copy the local data back over the AXI interfaces to
the testbench. We also move the reads from packet headers in
ped_subtract out of the loop and store the values in local variables.
Some functionality can be pipelined or parallelized. In pedestal
subtraction, calculating the offset into the pedestal array based on
the trigger time can be moved to the inner loop. While this would
introduce unnecessary additional computation in software, this
presents opportunities for optimization in hardware synthesis. The
change turns pedestal subtraction’s loop over samples and channels
into a perfectly nested loop, which the synthesis tool automatically
flattens. Furthermore, this allows for pipelined execution, which
we enable by adding #pragma HLS PIPELINE II=1. To avoid an
II violation due to limited memory ports, we partition the global
ped_sub_results array along its channel dimension.

Wemake a similar change to integration, changing the loop order
so that it iterates over channels, then integrals, in a perfectly nested
fashion; we also enable pipelining of the flattened loop. Inside this
loop, we use a local variable to track the integral value as we iterate
over samples with a ternary conditional operator to add pedestal-
subtracted sample values if they are inside the integral bounds.
After the innermost samples loop, the local value is written back to
the global array. This logic allows the inner loop to be automatically
unrolled by the synthesis tool. Again, to enable efficient pipelining,
we partition the bounds BRAM interface variable.

Zero-suppression requires only minor modifications, as it is
already implemented with perfectly-nested loops. We use local
variables to copy values to and from the global arrays, as well as
the BRAM interface for thresholds. The integral value is updated
using a ternary operator instead of an if statement. These changes
allow the outer loop (over integrals) to be pipelined, and the inner
loop (over channels) is automatically unrolled.

Besides the use of local variables to access global array members,
island detection and centroiding structurally remain largely the
same. However, we find that fully unrolling both the outer loop
(over ALPHAs) and the inner loop (over channels) via the addition
of #pragma HLS UNROLL directives improves performance.
Results andDiscussion.Results of synthesis andC/RTL co-simulation
are listed in row 2. HLS Optimizations of Table 1. The II is just
over 22 thousand cycles (a 56× reduction), and simulated latency is
only 400 𝜇s (a 35× speedup). BRAM usage does not increase, but the
number of DSP slices, flip-flops, and LUTs increases significantly.
However, resource utilization remains under 50% while allowing us
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to process ∼ 2500–4500 events per second, even clocked to a conser-
vative 100 MHz. However, this may still not meet the performance
goals expected for APT, so we optimize further.

5.2 Dataflow Pipelining
Dataflow programming enables deep task-level pipelining, allowing
the parallel execution of functional modules that process stream-
ing data passed via FIFO queues, and minimizing latency due to
front-end data ingress. Recently, dataflow programming has been
successfully implemented using Intel’s HLS compiler tools for data
preprocessing in other detector applications [16]. Using such an
architecture, we realize significant performance gains.
Motivation. As illustrated in Fig. 7, an ALPHA ASIC data packet
encodes a Samples×Channels matrix of digitized values. Values
for all 16 channels for each time sample stream in order to the
FPGA before the next time sample arrives. Furthermore, we ob-
serve in Listings 1 and 2 that pedestal subtraction and integration
both execute over each time sample sequentially; this means that
integration can process time samples as soon as pedestal-subtracted
values become available, rather than delaying execution until the
entire packet has been processed. Similarly, zero-suppression, island
detection, and centroiding can process integrated signal values as
they become available. To enable deep pipelining across the compu-
tational stages, we can execute each function in parallel, connecting
them via FIFO queues, and retrieving data using blocking reads.
Vectorized Execution. To realize this design, we make use of
vector data types, which the Vitis HLS C++ library provides as a
generic type. By vectorizing across the 16 input channels on an
ALPHAASIC, an entire time sample can be retrieved from orwritten
to a FIFO in a single line of code. As each channel is processed
equivalently, this simplifies the specification of execution logic.
Furthermore, integration (which merely adds values) can naturally
be extended to sum over vectorized representations, rather than
performing addition on each channel individually.
Implementation.We implement our dataflow architecture accord-
ing to the structure illustrated in Fig. 7. The logic for each of the five
ALPHA ASICs is replicated in parallel. For each ALPHA, an initial
function reads time samples, vectorized across channels, from the
ALPHA packet; these are then passed via an hls::stream FIFO to
pedestal subtraction. As pedestal subtraction processes each vector,
it passes it to signal integration. Integration produces four inte-
grals per packet (vectorized across channels), which are passed to
zero-suppression. The suppressed values across the five ALPHAs
are merged and passed to island detection, which itself passes the
number of islands and the integrals to centroiding. Centroiding
sends the integrals and resulting centroid to functions that write
back to the testbench (in the complete implementation, these will
send data to the back-end analysis CPU.)

To enable deep pipelining and efficient parallel execution of each
pipeline stage, we modify the C++ code that specifies the kernel
logic, refactoring and applying several HLS-specific pragmas. We
change our testbench and top-level function so that each ALPHA
data packet has a dedicated AXI interface, which allows parallel
reads from the corresponding memory without contention. The
top-level function retrieves the relevant packet header data listed

in § 3.2. It then calls a separate dataflow function, outlined in List-
ing 7, which implements the complete pipeline illustrated in Fig. 7.
This function defines instances of hls::stream variables to pro-
vide FIFO queues between its functional blocks and partitions arrays
(where necessary) across ALPHAs to provide dedicated access to
each parallel instance of dataflow_alpha. The dataflow_alpha
function (also outlined in Listing 7) encapsulates the dataflow func-
tionality for each individual ALPHA, as illustrated in Fig. 7. It is
explicitly called 5 times by dataflow; since it is decorated with
#pragma HLS FUNCTION_INSTANTIATE variable=alpha, the com-
piler synthesizes a distinct copy for each ALPHA.

Listing 7: DataflowWrapper Function Implementations
1 void dataflow_alpha (..., const uint8_t alpha) {

2 #pragma HLS FUNCTION_INSTANTIATE variable=alpha

3 hls::stream <hls::vector <uint16_t ,16>> pkt_samples;

4 #pragma HLS STREAM variable=pkt_samples depth =256

5 ...

6 #pragma HLS DATAFLOW

7 read_samples(samples , pkt_samples);

8 ped_subtract (..., pkt_samples , ped_samples);

9 integrate (..., ped_samples , integrals);

10 zero_suppress(thresholds[alpha], integrals , zeroed_integrals);

11 }

12
13 void dataflow (...) {

14 hls::stream <hls::vector <int32_t ,16>> zeroed_integrals [5];

15 #pragma HLS STREAM variable=zeroed_integrals depth=4

16 ...

17 #pragma HLS array_partition variable = peds type=complete dim=1

18 ...

19 #pragma HLS DATAFLOW

20 dataflow_alpha (... ,0);

21 ...

22 dataflow_alpha (... ,4);

23 merge_integrals(zeroed_integrals , merged_integrals);

24 count_islands(merged_integrals , island_int , num_islands);

25 centroid(island_int , num_islands , centroid_int , local_centroid);

26 write_integrals(centroid_int , output_integrals);

27 write_centroid(local_centroid , centroid_out);

28 }

Our implementation of read_samples simply loops over time
samples in the data packet, reads a complete 16-channel-wide vec-
tor of values, and writes them to the pkt_samples FIFO. Pedestal
subtraction remains largely the same, though it reads a complete
vector at a time from the FIFO. Our initial optimization of signal
integration in § 5.1 reordered the loops; for our dataflow implemen-
tation, we revert back to the loop order in the naïve implementation
(Listing 2): for each time sample, it retrieves a complete vector of
values from pedestal subtraction. The inner loop over integrals is
completely unrolled, allowing each integral to be computed in par-
allel as time samples are received; an array of temporary integrated
values enables efficient pipelining across time samples. At the end
of the function, the four resulting vectors are written in order to
an output FIFO; these are read by zero-suppression, which writes
its results to another FIFO.

The output FIFOs from eachALPHA’s instance of zero-suppression
are merged by the merge_integrals function in dataflow. This
passes vectors of integral values in ALPHA, then integral number,
order to island detection. While island detection only scans for is-
lands across the specified integral number, it passes all integrals (as
well as the number of islands found) to centroiding, as these integral
values will be written out. Similarly, centroiding passes all integral
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Figure 7: A dataflow architecture enabling task-level parallelism and deep pipelining.

values, but only performs centroiding on the specified integral num-
ber. To avoid unnecessary conditional logic, our implementation
performs centroiding regardless of the number of islands found,
but writes zeroes to the position and signal attributes of the cen-
troid value passed to the output FIFO if the number of islands does
not equal 1. Finally, the write_integrals and write_centroid
functions retrieve data from centroiding’s output FIFOs and write
back to the AXI interfaces.
Results and Discussion. Results of synthesis and co-simulation
are listed in row 3. Dataflow Pipelining of Table 1. While the
addition of FIFOs and partitioned arrays increases BRAM usage
(though at 75%, it remains underutilized), the FF, LUT, and DSP
counts decrease. Most importantly, II decreases 75× to 299 cycles,
and latency to 4.4 𝜇s (a 91× speedup) with a conservative 100 MHz
clock. This enables processing of at least 227 000 events per second,
achieving APT’s performance requirements. Furthermore, ALPHAs
output 2.56 𝜇s of sampled data, and have a triggering holdoff of at
least 3 𝜇s [38], so even faster performance may not be beneficial.

6 EXPLORING ALTERNATIVES
In the previous section, we achieved a sufficiently performant imple-
mentation of ADAPT’s FPGA-based data reduction and preprocess-
ing pipeline that does not overutilize the FPGA, even if centroiding
remains on the same chip. However, our current implementation
does not include all necessary functionality; missing components
may include edge detector preprocessing, pedestal calibration, and
communication with the analysis CPU. Moreover, with the tight
SWaP constraints imposed by a space-based instrument, reducing
the number of FPGAs may be beneficial. In this section, we ex-
plore a few alternative approaches, with a particular eye toward
speed and area tradeoffs. Each approach uses the dataflow-based
implementation from § 5.2 as a baseline.

6.1 Alternative Algorithms
We begin by independently implementing alternative versions of
island detection and signal integration.
Islands as consecutive channels of zero-positive integrated
signal values. The implementation of island detection described in
§ 4.1 iterates over channels using a flag variable to track whether or
not it is currently in an island. We now try an alternative iterative

approach that scans the integrated signal values for adjacent chan-
nels with a zero (post zero-suppression), then a positive value (also
accounting for the case where the first channel of the first ALPHA
has a positive value). Results are outlined in row 4. Consecutive
Channel Island Detection of Table 1. Latency and II remain the
same (not surprising, as island detection did not bottleneck the
throughput of our original dataflow implementation). We also ob-
serve that BRAM usage remains the same, while flip-flop and LUT
utilization increase only slightly (<1% each). This suggests that the
alternative algorithm makes little difference, and should not be the
preferred methodology. Nonetheless, when performing high-level
synthesis, algorithmic changes may have a more substantial impact.
These are important to explore, as illustrated by the next example.
Signal integration with prefix sums. In our current implemen-
tation, the integrals over four different regions of the incoming
signal waveform must be computed independently. Our dataflow
implementation executes these in parallel, which minimizes impact
on II and latency, but increases resource utilization. We experiment
with an alternative approach: by computing a prefix sum over all
time samples, the integrals can then be computed as the difference
between the values indexed by the integral bounds.

We use a local array of 16-channel-wide vectors to store the
prefix sum values, then populate the array as values are read from
the FIFO out of pedestal subtraction. Once all values for a single
data packet have been read, the function computes each integral.
The integral bounds are shifted by the trigger time offset (see line 3
of Listing 2). Similarly to the original implementation, the shift can
result in a negative starting index or an ending index that exceeds
the size of the array. In this case, the value is shifted appropriately
according to the size of the ring buffer. As this would put the starting
value ahead of the ending value, a “wraparound” calculation is used:

1 integral = (end < start) ?

2 psums[NUM_SAMPLES] - psums[start] + psums[end+1] :

3 psums[end+1] - psums[start];

(Note that the prefix sum array, psums, is of size 257 with the first
element set to 0.)

Synthesis and co-simulation results are shown in row 5. Prefix
Sum Integrals of Table 1. Latency and II increase by just 3 cycles
(∼ 1%). Most notably, BRAM usage increases substantially: from
668 to 813 blocks. This is a bit surprising, as the pedsums array is

122



HLS Taking Flight: Toward Using High-Level Synthesis Techniques in a Space-Borne Instrument CF ’24, May 7–9, 2024, Ischia, Italy

of size 128.5 kib (257 samples × 16 channels × 32 bits per integral
value), and a single BRAM block stores 18 kib, suggesting only an
extra 8 blocks are necessary, not the 145 that were added. However,
flip-flop and LUT usage both decrease significantly. Given that this
approach uses 91% of the FPGA’s available BRAM, it may not be
the preferred implementation. However, it is worth considering in
a future implementation where plenty of BRAM remains available
while FFs and LUTs become overconstrained.

6.2 Sequential Execution over ALPHA ASICs
As a final alternative, we consider a more substantial tradeoff be-
tween speed and area. While our dataflow implementation achieves
an event processing rate of over 2×105, it also uses 75% of the
chip’s BRAM and almost half of its LUTs. If a slower event rate is
acceptable, we can achieve a lower resource utilization (thereby
decreasing the number of FPGAs required) by processing ALPHA
packets in sequence, as opposed to using five parallel instantiations
of the dataflow_alpha function outlined in Listing 7.
Implementation.We modify our baseline dataflow implementa-
tion as follows: First, because integrals from each ALPHA will
be produced sequentially, instead of in parallel, we implement
zeroed_integrals (line 14 of Listing 7) as a single hls::stream
FIFO variable, rather than an array. Second, the DATAFLOW pragma
instructs the synthesis tools to implement each contained func-
tion call in parallel. As we do not want five separate instantia-
tions of dataflow_alpha, we have to call the function sequen-
tially in a loop. However, “the only kind of statements allowed
in a canonical dataflow region are variable declarations and func-
tion calls.”4 Instead, we wrap the loop in a separate function that
takes pointers to each ALPHA data packet interface, using a switch
statement to pass the corresponding packet pointer to each call to
dataflow_alpha. Third, we remove the FUNCTION_INSTANTIATE
pragma from dataflow_alphas so that the compiler does not syn-
thesize multiple copies of the function logic.

When we synthesize the kernel in this manner, the tools fail
with the following message: “Implementing stream: may cause mis-
match if read and write accesses are not in sequential order on
port ‘zeroed_integrals.’ ” Despite the fact that, as written, writes are
performed by a single function (zero_suppress) invoked sequen-
tially across ALPHAs, and reads are performed by a single function
(merge_integrals) executing in parallel in the dataflow function,
the tools are unable to synthesize the specified logic. Even passing
references to completely separate FIFO queues in each sequential
call, then merging all of those queues in merge_integrals, fails
with the same message.
Results and Discussion. To allow this approach to synthesize, we
also have to remove the DATAFLOW pragma from dataflow_alphas.
Results are reported in row 6. Sequential ALPHA Execution of
Table 1. Notice that latency increases 14× and II by 17×, instead
of the intended ∼5×, due to the removal of task-level parallelism
from the logic invoked by dataflow_alphas. Nonetheless, even at
a conservative 100 MHz clock, this would enable preprocessing of
over 16 thousand events per second while utilizing less than 50% of
the FPGA area, possibly enabling a single FPGA to handle an entire

4Taken from a Vitis HLS 2021.1 synthesis warning.

layer. While this might not keep up with the event rate associated
with an extremely bright burst [21], event processing may already
be limited by the data rate from the ALPHA to the FPGA: 16×105
data packets require roughly a gigabit.

7 CONCLUSIONS
In this work, we have demonstrated the challenges associated with
HLS: understanding of the synthesis tools, appropriate selection of
programmingmethodology (e.g., dataflow pipelining), and judicious
use of HLS-specific pragmas are all crucial to achieving desired
performance. As an illustrative example, we have considered the
front-end sensor data reduction and preprocessing pipeline for APT,
a future space-based observatory for high-energy gamma-ray and
cosmic-ray sources, and synthesized this pipeline for its Antarctic
demonstrator (ADAPT), targeting an embedded Kintex 7 FPGA.
The performance gains are substantial: compared to a naïve imple-
mentation, optimizations provide a 3415× speedup without overuti-
lization, enabling processing of over 2×105 gamma-ray events per
second with a conservative 100 MHz clock. Furthermore, if energy
savings are needed, simple modifications to the HLS-based code
allow alternative implementations that may halve the number of
FPGAs while still maintaining an II of ∼5000 cycles. These results
demonstrate the feasibility of using HLS techniques to synthesize
kernels for space-borne instruments.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact contains the kernel and test bench source code for high-level
synthesis (HLS) of ADAPT’s data preprocessing and reduction algorithms.
Code is written in C++ for compilation in AMD XILINX Vitis HLS version
2021.1, targeting the Kintex-7 KC 705 evaluation platform (XC7K325T).

This artifact reproduces the results in Table 1. Users need the free Vitis
HLS software to emulate the target FPGA. A physical FPGA is not required.

A.2 Author Information
For questions about this artifact, please contact Marion Sudvarg, McKelvey
School of Engineering, Washington University in St. Louis, St. Louis, Mis-
souri, USA, msudvarg@wustl.edu.

A.3 Artifact check-list (meta-information)
• Algorithm: We present implementations of data pre-processing
algorithms (Listings 1–5) for high-energy particle telescopes.

• Program: C++ implementations of test-bench and HLS kernels.
• Data set: Sample ALPHA ASIC data packet and pedestal files.
• Run-time environment: AMD XILINX Vitis HLS 2021.1. Can be
installed on Windows 10, 11, or Linux with desktop environment.

• Metrics: FPGA kernel speed and area.
• Output: Synthesis reports with data in Table 1.
• Approximate disk space required: 50GB to install Vitis HLS.
• Approximate preparation time: 1–2 hours to install Vitis HLS.
• Approximate experiment time: 1 hour.
• Publicly available: https://doi.org/10.7936/6RXS-103658
• Code and data licenses:MIT.

.
A.4 Description
A.4.1 How to access. This artifact is available on GitHub and an archival
repository through the Washington University in St. Louis libraries:
https://doi.org/10.7936/6RXS-103658
https://data.library.wustl.edu/record/103658
https://github.com/McKelvey-Engineering-CSE/adapt_fpga/tree/computing-
frontiers-2024

A.4.2 Hardware dependencies. No special hardware needed. Only a laptop
or desktop running Windows 10, 11, or Linux with a desktop environment
that can support AMD XILINX Vitis HLS 2021.1.

The Vitis HLS installation requires around 50GB of free space.
Synthesis and co-simulation of all versions of the kernel pipeline requires

around 1 hour on a Linux machine with 8 cores and 16GB of memory.
However, 4 cores and 4GB of memory are sufficient.

A.4.3 Software dependencies. AMD XILINX Vitis HLS 2021.1.

A.4.4 Data sets. ALPHA ASIC sample data packet, EventStream.dat, and
pedestal value, peds.dat, are included.

A.5 Installation
Detailed instructions and screenshots are in the repository’s ‘README.pdf.’

A.5.1 Install Vitis HLS. Install AMD XILINX Vitis HLS 2021.1 per these in-
structions: https://docs.xilinx.com/r/2021.1-English/ug1393-vitis-application-
acceleration/Installing-the-Vitis-Software-Platform

Download the “Vitis Core Development Kit - 2021.1 Full Product In-
stallation” installer: https://www.xilinx.com/support/download/index.html/
content/xilinx/en/downloadNav/vitis/archive-vitis.html
A.5.2 Create Project. Launch Vitis HLS, create a new project, then add the
design files: preprocess.cpp, preprocess.h.

Select preprocess as the top function. Next, add testbench files:
host_hls.cpp, preprocess.h, EventStream.dat, peds.dat.

On the next screen, set a 10 ns clock period, then select a part. Search
by “Boards” and select “Kintex-7 KC705 Evaluation Platform.” Finally, click
“Finish.” Your evaluation environment will launch.

A.6 Experiment workflow
We compare the reported performance of the seven different implementa-
tions of our data pre-processing pipeline listed in Table 1. The II (initiation
interval in cycles) and resource utilization (BRAM, DSP, FF, and LUT) met-
rics are taken from the Vitis HLS C synthesis report. Latency, in cycles, is
taken from the Vitis HLS C/RTL co-simulation report.

The repository contains a copy of the testbench and kernel files for
each implementation. For example, (i) 1-preprocess.cpp is the HLS code
for the kernel corresponding to implementation 1. Functional Baseline;
(ii) 1-host_hls.cpp is the C++ testbench corresponding to 1. Functional
Baseline; and (iii) 1-preprocess.h is the common header file for the two.
We also provide a header, filepath.h, that defines paths to the input data
and output result files used in simulation. Modify the following line to
reflect the actual path to the repository on your evaluation system:

1 const std:: string path_to_repo = "/home/yourusername/adapt_fpga/";

For example, these steps evaluate 1. Functional Baseline:
(1) Modify filepath.h as appropriate.
(2) Launch Vitis HLS: vitis_hls
(3) Copy corresponding project files into project:

1 cp 1-preprocess.cpp preprocess.cpp

2 cp 1-preprocess.h preprocess.h

3 cp 1-host_hls.cpp host_hls.cpp

(4) Run C Simulation (typically takes < 1 minute).
(5) Run C Synthesis (typically takes 3–5 minutes).
(6) Run C/RTL Cosimulation (typically takes 5–10 minutes).

A.7 Evaluation and expected results
A.7.1 C Simulation. This process compiles the C++ testbench and ker-
nel code into a software binary and runs it. At the end of a run, the
file output.txt will be produced in the repository directory pointed to
by filepath.h. It contains debugging output information from the pre-
processing pipeline. The correct output that can be compared with diff
can be found at output_five_centroiding.txt.

A.7.2 C Synthesis. This step generates and analyzes the FPGA kernel. At
the end of a run, Vitis HLS will display a report called “Synthesis Summary.”
This contains the II, BRAM, DSP, FF, and LUT values shown in Table 1. The
report file is generated in /(solution path)/syn/report/csynth.rpt
where (solution path) is the path to the Vitis HLS solution specified when
creating the project. The file has additional details, including the resource
utilization percentages in Table 1. We have provided the corresponding re-
port for each implementation in the repository. For example, 1-csynth.rpt
corresponds to implementation 1. Functional Baseline.

A.7.3 C/RTL Co-Simulation. This step compiles a software binary for the
testbench and runs it simultaneously with the synthesized kernel in an emu-
lation environment. At the end of a run, Vitis HLS will display a report called
“Co-Simulation Report” which contains the latency value shown in Table 1.
The file is /(solution path)/sim/report/preprocess_cosim.rpt. We
have provided the corresponding report for each implementation in the
repository. For example, 1-preprocess_cosim.rpt corresponds to imple-
mentation 1. Functional Baseline.

This step also creates an output.txt file similarly to C Synthesis. It can
also be compared to output_five_centroiding.txt. As we have noted in
the paper, the output produced by the 0. Naïve implementation is incorrect,
and is instead expected to match the file output_naive.txt.
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