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Abstract

In multi-messenger astrophysics, signals of multiple types (e.g.,
gravitational waves, neutrinos, electromagnetic waves) are com-
bined in an effort to learn more about the observed phenomena of
interest. The Advanced Particle-astrophyics Telescope (APT) is a
mission concept for a space-borne instrument that detects gamma-
ray bursts (GRBs) omnidirectionally, facilitating multi-messenger
observations by identifying and localizing celestial events of inter-
est. Here, we describe the on-instrument computations for APT
and its Antarctic Demonstrator (ADAPT) as well as techniques for
follow-up observations of transient events.
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tems organization — Embedded software; Embedded hard-
ware.
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1 Introduction

The astrophysics community has a strong interest in observing
transient celestial events using multiple imaging modalities. This
multi-messenger approach may include, e.g., gravitational waves,
electromagnetic waves, neutrinos, and cosmic rays [15, 16]. Because
transients can represent short-lived phenomena [1], fast detection
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and localization is key to supporting cooperative multi-modal ob-
servation. This work describes cooperative multi-wavelength elec-
tromagnetic observation: localizing a transient from its gamma-ray
emissions, with follow-up performed by optical telescopes. How-
ever, the computational techniques we employ generalize to multi-
messenger observation.

The Advanced Particle-astrophysics Telescope (APT) [7] mission
concept is a proposed gamma-ray and cosmic-ray observatory that
will orbit the Sun-Earth Ly Lagrange Point, which avoids obstruc-
tion by the earth and ensures a nearly omnidirectional, 477-steradian
field of view (FoV). Its goals include prompt detection and local-
ization of gamma-ray bursts (GRBs), which are early indicators
of, e.g., neutron star and black hole mergers, blazar and magnetar
flares, and supernovae. APT’s localizations will permit follow-up
observation of such events by optical telescopes, which typically
have quite narrow FoVs. It is predicted to localize GRBs with better
than 1° accuracy and computational latency under 1 s [11]. Our
recent work towards APT focuses on improving the accuracy of
event localization in the presence of noise and uncertainty.

Other full-sky instruments have larger localization uncertainties,
e.g., >20° [3] for the gravity-wave detectors LIGO and VIRGO, and
~5-10° [12] for APT’s upcoming Antarctic Demonstrator (ADAPT).
To convey this uncertainty, these instruments must supplement
point localization with more detailed likelihood maps that provide
a spatial probability distribution over possible locations. The most
likely regions of the map can then be searched by fast-slewing, wide-
FoV (~2-10°) optical telescopes to localize a source for observation
by more sensitive, narrow-FoV (<1°) instruments.

Several factors contribute to the delay between detection and sec-
ondary observations, including time to localize/map the transient,
communication latency to follow-up instruments, and the time for
these instruments to physically search the sky as directed by a
likelihood map. Real-time computation of localizations and maps is
particularly challenging for space-based instruments like APT, for
which limited communication bandwidth and high speed-of-light la-
tency to earth (APT will orbit 5 light-seconds away) make real-time
processing on the ground impractical. As a result, the computa-
tional pipeline that transforms raw sensor data into localizations
must execute on the instrument (in space) [7] and must therefore
meet significant size, weight, and power (SWaP) constraints.

This work describes four important computational elements
associated with APT and their ongoing development for ADAPT:
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Figure 1: A gamma ray’s Compton ring is defined by the
vector c between its first two interactions and cosine 1 (with
uncertainty dn) of its first scattering angle (from [12]).

(1) improved trajectory reconstruction for individual gamma rays,
(2) use of machine learning in point localization, (3) work in progress
to generate likelihood maps, and (4) instrument control approaches
to implement the follow-up observations.

2 Trajectory Reconstruction

APT and ADAPT infer a GRB’s direction by combining the trajec-
tories of individual gamma-ray photons that interact within them.
This section gives an overview of the instrument designs and the
methods we are developing to reconstruct gamma ray trajectories
from raw sensor data produced by their detectors.

The APT and ADAPT Detectors. APT and ADAPT are constructed
with layers of scintillating tiles that emit visible light when incom-
ing gamma-ray photons scatter within them. This light is captured
by perpendicular arrays of wavelength shifting (WLS) optical fibers
that line the top and bottom surfaces of the tiles, then measured by
silicon photomultipliers (SiPMs) placed at the end of each fiber. This
overlay of 1-dimensional fiber arrays into a 2-dimensional mesh,
along with the relative position of the tile, allows us to resolve the
3-dimensional position r = (x, y, z) of each gamma-ray/scintillator
interaction. Additional SiPMs, placed around the edges of the tile
layers, improve light collection and provide an estimate of the
energy E deposited with each interaction.

Both instruments will fly with onboard computational hardware,
including preamplifier and waveform digitizer ASICs to shape, sam-
ple, and digitize analog signals from the SiPMs. FPGAs process
the ASIC data, reducing it to spatial coordinates and energy mea-
surements. A processor builds the final list of (r;, E;) values for the
interactions associated with each gamma ray, then uses these to per-
form Compton reconstruction, constraining the gamma-ray photon’s
initial trajectory to a ring of the form illustrated in Figure 1.

FPGA Pipeline Prototype. ADAPT’s digitizer ASICs continuously
sample the output voltages from the SiPM preeamplifiers and store
the values in a ring buffer with an analog memory depth of >256
entries. When a gamma ray is detected, all ASICs are triggered
simultaneously to digitize and read out these values. Given the
speed at which the gamma-ray photon moves within the detector,
all of its interactions are captured in a single readout, and cannot be
temporally disambiguated. We refer to the collection of data from
a single gamma ray’s interactions as an “event.”

ADAPT will produce around 200 KB-1 MB of raw data for a
single event (APT will produce ~100x more), and during a burst,
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several thousand events trigger every second (APT will trigger ~10-
100 faster). To sustain these high data rates, a hierarchy of FPGAs
reduces the data for later processor-based handling. In previous
work, we described an initial prototype FPGA pipeline specified
with high-level synthesis (HLS) [21].

Our initial prototype first performs pedestal subtraction, re-
moving the capacitive charge pedestal inherent to the ASIC’s analog
memory cells from the digitized readouts to yield the true sampled
signal values. Each memory cell has a unique pedestal value.

Next, to infer the number of photons captured by each fiber
or edge detector’s SiPMs, a signal integration stage sums over
digitized output values. ADAPT’s digitizers sample 2.5 ns windows;
capturing a significant portion of the scintillation time therefore
requires integrating over tens or hundreds of samples. Our imple-
mentation computes multiple integrals with configurable bounds to
capture different components of the waveform. Zero-suppression
then sets integral values under a configurable threshold to zero;
sufficiently low values may be caused by various noise effects in
the circuit, and are assumed not to correspond to “real” photons.

To infer interaction coordinates from the array of integrated
signal values, island detection and centroiding take the intensity-
weighted mean of WLS fiber positions over islands of adjacent non-
zero channels. In our original prototype, island detection merely
counted islands, rather than identifying their boundaries. We as-
sumed this was acceptable because ADAPT does not perform tra-
jectory reconstruction for events with more than two interactions
in a single layer, as these are more likely caused by background
radiation in the earth’s upper atmosphere [10]. Under this simplify-
ing assumption, centroiding can take the weighted mean across all
channels. If island detection identifies only a single island, the result
is correct, since all channels outside the island have zero signal and
therefore do not contribute. Otherwise, the result is discarded.

In [21], we describe several HLS-based optimization techniques
for this pipeline, including the use of pragmas specified to the AMD
XILINX Vitis HLS platform, wide vector operations, paralleliza-
tion via loop unrolling, and a dataflow pipelined architecture. We
achieved a throughput of >2 X 10° events per second in simulation,
even with a conservative 100 MHz system clock.

Recent FPGA Developments. Our prototype pipeline had limita-
tions that we have since worked to address. First, our prototype was
designed to handle a single event, data from which was assumed
to already reside in block memory (BRAM) on the FPGA. Under
this assumption, registers were allocated for important header in-
formation, e.g., the offset between logical and physical addresses.
However, in a truly pipelined design, new events may arrive while
old ones are being processed, resulting in race conditions on these
values. To address this, we implemented a finite state machine
(FSM) packet handler to read out the serial interface from the
digitizer ASICs. The FSM packages relevant header information
into a data structure that is passed among each pipeline stage via a
sequence of connecting FIFOs. It also vectorizes the received sample
values across 16 adjacent readout channels, pushing a vector for
each logical sample number into a FIFO for pipelined processing in
the subsequent stages, beginning with pedestal subtraction.

The packet handler architecture provides additional flexibility,
allowing us to easily swap or handle multiple types of waveform



Coordinating Instruments for Multi-Messenger Astrophysics

digitizers. ADAPT is expected to demonstrate the capabilities of
two digitizer ASICs: the ALPHA [13], developed by collaborators
at the University of Hawai‘i at Manoa, and the HDSoC from Nalu
Scientific, both based on the TARGET ASIC [5]. Although simi-
lar in design, the ALPHA and HDSoC use different packet header
formats and send channel/sample data in different orders. By de-
signing a unified vectorization scheme and metadata format for the
downstream pipeline, we merely need to swap out packet handler
implementations to support both ASICs.

The output of the signal integration stage is a digital value re-
flecting the total charge captured during the integration window.
To convert this value to the corresponding number of photons
captured, we have implemented a gain correction stage in the
pipeline. This multiplies the integrated value by a per-channel
fractional gain to obtain the photon count. It then subtracts the ex-
pected dark count for the duration of the integration window. Due
to thermally-generated electrons a SiPM will spontaneously emit
an output current equivalent to the one generated by an incident
photon; these should be subtracted to obtain the real photon signal.
The dark count rate is a property of the SiPM, its input voltage, and
its temperature; it can be estimated [19] or calibrated per channel.

We have also combined island detection and centroiding into
one functional module that supports multiple islands. It makes a
single scan over the fiber channel array, using registers to track
whether it is currently in an island, and whether it has just entered
or left an island. While in an island, registers maintain the island’s
beginning channel position, width, and total intensity, while a
multiply-accumulate circuit tracks the intensity-weighted position.
When leaving an island, a single divide computes the weighted
mean to get the interaction position, and the centroid data is pushed
into a FIFO to be transmitted via Ethernet to the processor.

Compton Reconstruction. From the WLS centroids and edge detec-
tor signal intensities, we build a list of interactions, or hits, (rj, E;)
for each individual event. From these, we reconstruct the gamma-
ray photon’s trajectory to constrain the burst’s direction in a process
referred to as Compton reconstruction [6].

For a gamma-ray photon that scatters following an interaction
with an electron, the Compton law gives the relationship between
the cosine 75 of the photon’s scattering angle and its energy before
and after the interaction. Given the vector ¢ between its two inter-
actions and this n value, we can constrain the gamma ray’s source
direction s to a circle projected on the unit sphere, as illustrated in
Figure 1. Spatial and energy measurement errors spread the circle
into a ring, or annulus; by propagation of error, we can estimate
the uncertainty dp in its radius [18].

Reconstruction is challenging because the list of hits is tempo-
rally unordered due to the gamma ray’s speed-of-light travel within
the instrument. We therefore use the methods described in [6] to
infer the most likely ordering of hits. We developed an accelerated
branch-and-bound tree search algorithm [18, 19] that achieves a
throughput of around 3 x 10° events per second when utilizing all
4 cores of ADAPT’s flight computer [20].

3 Point-Source Localization

Localization aims to determine the most likely source direction for
a GRB using the Compton rings inferred by reconstruction.
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Figure 2: ADAPT GRB localization pipeline (from [12]).

Approach. Localization fixes a GRB’s source direction s by “inter-
secting” multiple Compton rings. In principle, three rings suffice to
fix s; however, we must contend with both the uncertainties dn of
each ring and the fact that many observed rings (>50% for ADAPT)
arise from unrelated, diffuse background radiation.

As described in [11], ADAPT s localization operates in two stages.
The first stage, approximation, considers source directions that lie
on one of a random sample of reconstructed rings and selects a
direction sg that maximizes the joint likelihood of the sample. The
second stage, refinement, uses an iterative least-squares approach
to adjust s until it converges to a maximum-likelihood estimate s
given all the rings. To improve the robustness of refinement, each
iteration of least-squares fitting excludes as background any rings
that do not pass near the current estimate s;j of the source direction.

Use of Machine Learning. Our recent work [12] supplements
ADAPT’s localization pipeline with machine learning inference
designed to address background noise and uncertainty estimation.
We introduce two multilayer perceptron models, the background
network and the dEta network. The first model classifies a Compton
ring as originating from either the GRB or the background, allowing
background suppression; the second more accurately estimates dn
for the surviving Compton rings. Each model takes as input the
energy and position estimates of interactions that gave rise to the
ring, along with an estimate of the GRB’s polar angle with respect
to the detector z-axis.

Providing polar angle as an input proved essential to the accu-
racy of our ML models; however, it required altering the flow of
localization as shown in Figure 2. We now iterate between the basic
localization computation — which produces an estimated source
direction § that includes its polar angle — and relabeling the in-
put rings using the background network, discarding those that are
labeled as background. Once the estimate § converges, or after a
predetermined number (currently 5) of iterations, we re-estimate
dn for all surviving rings and obtain s with a final run of the core
algorithm. This iterative approach both increases overall predictive
accuracy and allows us to trade off between accuracy and efficiency.

Validation. Figure 3 summarizes experiments from [12] that mea-
sure the impact of our machine-learning additions to localization.
These results measure the accuracy with which ADAPT can localize
simulated 1-second GRBs with brightness 1 MeV/cm?. Using ML
consistently improved localization accuracy, both in the common
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Figure 3: Localization accuracy vs. polar angle for old (“No
NN”) and new (“NN”) pipeline (from [12]).

case (68%ile error) and especially for outliers (95%ile error). We
predict that across all polar angles, ADAPT can localize GRBs with
fluence > 1 MeV/cm? to within 6° of error at least 68% of the time.
We also measured the computational cost of localization on a
single-board computer with a quad-core, 1.92 GHz Intel Atom E3845
processor that will fly on ADAPT. Reconstruction and localization
for a 1 MeV/cm?, normally-incident burst required around 220
ms. The time spent applying the neural networks was roughly
comparable to the time spent in approximation and refinement.
We are currently investigating how to implement the architec-
ture of Figure 2 as a streaming computation. A streaming approach
could produce a series of increasingly accurate localizations over
time, continuously communicating estimates to a follow-up optical
instrument as it decides how to best to search for the GRB.

4 Likelihood Mapping

The techniques of Section 3 identify one likely location for a GRB
in the sky but do not communicate the likelihoods of alternate
locations. Observing partners demand this additional information
to help them decide whether to commit their narrow-FoV telescopes
to search for an optical counterpart to a GRB, and if so, how to
prioritize possible locations during the search. The information
is communicated in the form of a likelihood map, as illustrated in
Figure 4, that scores each possible sky location as to the likelihood
that it contains the GRB. Here, we describe mapping methods we
are developing for ADAPT and APT.

Approach. Our mapping computation follows that of the cosipy
library [14] released as part of the planned Compton Spectrometer
and Imager (COSI) mission, which has been used for multiple prior

Figure 4: Partial likelihood map for GRB 140329295 from
Fermi GBM catalog, showing 99% containment region.
Lighter-colored pixels are more likely to contain the GRB
source. The red cross denotes the actual source.
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gamma-ray instruments. Mapping, like point-source localization,
begins with a set D of Compton rings. As in Figure 1, each ring
in D has a center vector and radius; it also has an associated Ej,,
the measured energy of the photon. These three parameters define
the Compton data space (CDS) of possible rings. The rings in D are
assumed to arise either from a source that appears for time At at
location s or from background radiation.

The source and background are respectively characterized by
an instrument response R(s, E;) and a background model B. R and
B each describe the expected number of rings in a given volume
within the CDS observed during time interval At. R assumes that
rings arise from photons of energy E; arriving from a GRB of unit
intensity in source direction s, while B assumes that they arise from
the background. R and B are derived empirically from extensive
simulations that capture biases in observed ring parameters due to
the telescope’s geometry (e.g., whether shielding blocks photons
from some directions), detector electronics, and analysis software,
as well as biases inherent to the physics of Compton scattering.

Suppose for simplicity that all GRB photons have fixed energy E;.
To generate a likelihood map, we compare for each source direction
s the hypothesis H; that some portion of D arose from a GRB
point source at s, versus the null hypothesis Hy that D arose from
background alone. For H?, the expected number of rings produced
in a given volume of CDS is determined by R(s, E;) - p + B, where
p, the actual intensity of the GRB, is unknown a priori and so must
be fit to maximize the likelihood. For both HlS and Hy, the observed
number of rings within a given volume of CDS is assumed to be
Poisson with that volume’s expectation. The map score for direction
s is the log-likelihood ratio of H} versus Hy given D.

For computational convenience, the CDS, and hence R and B,
is discretized along its axes to form voxels; in particular, spatial
directions s and c are discretized into pixels using HEALPix [9], an
equal-area tiling of the sphere. D is discretized into counts in each
CDS voxel. Moreover, the energies E; of incident gamma rays are
not in fact fixed but rather follow a distribution, the GRB’s energy
spectrum. This spectrum must be known or estimated so that we
may average over it to obtain the response R for a given source
direction. Finally, although a log-likelihood ratio can be computed
for any source direction, we report only the containment region of
all s for which H7 lies within some confidence interval (typically
90 or 99%) of the maximum observed likelihood.

Computational Cost. A key question is whether likelihood map
generation, like point-source localization, can be done in real time
for short-duration GRBs, so that ADAPT and APT can coordinate
with follow-up telescopes seeking optical counterparts that could
fade within seconds. The computation is straightforward to paral-
lelize across source directions, and the response R and background
B are kept as arrays in DRAM for speed of access. We also imple-
mented multiresolution mapping, in which a map is produced at
low resolution for the whole sky and then refined only in areas
with likelihood scores high enough to plausibly contain the GRB.
We tested our implementation on 17 simulated transients from
the 3*d COSI Data Challenge [8], using COSI’s instrument response
R and inferring the background B from three months of simulated
observations in low-earth orbit. We generated likelihood maps
with 12,288 HEALPix pixels (~ 2° resolution), limiting output to the
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90% containment region for the source. On eight cores of an Intel
Xeon Gold 6240 processor, map generation consistently completed
in under 700 ms. Further improvements, even for lower-power
processors, will arise from porting our implementation to C++ and
exploiting a GPU to accelerate linear-algebraic operations.

Challenges. Robust likelihood mapping for ADAPT and APT re-
quires two further advances: real-time inference of GRB spectra,
and efficient representation and inference of the response R.

Thus far, we have relied on the ground-truth spectrum provided
by COSI to infer a burst’s distribution over E;. For ADAPT and APT,
we must infer this spectrum from observation. Cosipy’s spectral
estimation fits a model, such as a power law or a Band spectrum [4],
to maximize the likelihood of the observed Compton rings. This
approach requires nonlinear optimization and also assumes the
GRB’s source location is known, resulting in a circular dependence
with map generation. We will investigate simplified real-time fitting
approaches that do not assume a known source location.

The size of the instrument response R — several gigabytes for
even a low-resolution model — places large demands on memory
and data bandwidth. More seriously, computing R for a new tele-
scope such as ADAPT/APT requires casting trillions of photons at
a model of the detector using the GEANT4 particle physics simula-
tor [2] to learn the distribution of Compton rings across CDS bins.
Ongoing research includes compact machine-learning models that
can approximate R. We will also investigate efficient active-learning
approaches to infer R from fewer simulated photons.

5 Follow-up Observations

Given a likelihood map of potential source locations, a narrow-
FoV telescope must decide how to explore this map to maximize
its chance of seeing the source’s optical counterpart. Here, we
formulate this problem as a combinatorial optimization. The map
is divided into tiles, each representing a distinct observing field for
the telescope. The goal is to pick a subset of these tiles and an order
in which to visit them that maximizes the chance of seeing the
source. The solution is constrained by a time budget determined
by the time until the source’s counterpart is likely to fade below
the limit of detection. Both time spent dwelling (observing) at a tile
and time spent slewing (moving the telescope between tiles) count
towards this budget.

Problem Formulation. We model our problem as a variant of
the Budgeted Prize-Collecting Traveling Salesman Problem (BPC-
TSP) [17]. In this variant, the observation path is open, i.e., it need
not return to the starting point, and the cost of traveling between
nodes (tiles) includes both slew and dwell time.

Formally, G = (V, E) denotes a complete directed graph, where
each node represents a tile. Node v has a value L(v), the likelihood
that the source will be found at this tile, and edge (u,v) € E has
cost ¢y that is a sum of two parts: SlewTime(u, v), the time to slew
from u to v, and DwellTime(v), the time needed to observe at tile
v to see if the source is present. The graph is symmetric if dwell
times are uniform and asymmetric otherwise. We add a dummy
node vy with L(vg) = 0 to represent the telescope’s initial position.
The goal is to select a path P in G to maximize its value ), cp L(v);
however, P must satisfy 3. (,, o)ep cuo < T, where T is the budget.
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Heuristic Algorithms. Because BPC-TSP is an NP-optimization
problem, we tried several heuristics to solve it. A simple greedy
heuristic is as follows: if the path has reached tile u, select the
unvisited tile v that maximizes the ratio L(v)/cy,. This method
reduces to the well-known greedy knapsack heuristic if all ¢, are
uniform. Other, potentially more powerful heuristics explore a space
of possible paths. These include simulated annealing, genetic, and
ant-colony approaches that construct, modify, and/or mix together
paths to seek locally optimal solutions.

We also formulated our problem as an integer linear program
(ILP), using polynomial-size encoding as for TSP. We then applied
branch-and-bound optimization using the Gurobi ILP solver. For
instances with few tiles or a limited budget T, Gurobi returns an
optimal solution; for larger instances, we constrained it to run with
a 0.1% optimality gap and a time limit of 1800 s.

Experimental Setup. To compare the different solution strategies,
we tested them on the likelihood map of Figure 4 for GBM140329295.
The map gives the 99% containment region for the GRB, an ellipse
of roughly 446 deg? centered near 0° latitude covering 133 tiles.

The dwell time was assumed to be the same for all tiles. Slew
time between tiles depends strongly on the characteristics of the
telescope. We considered two models of telescope movement, each
of which describes a class of existing telescopes. In the first model
(“geodesic movement”), the time to slew between directions s; and s;
is proportional to the angular distance arccos(s;, sj) between them.
In the second (“two-axis movement”), the telescope’s altitude and
azimuth are controlled by two different motors, and the time to slew
from s; to s;j is proportional to the maximum of their difference in
altitude and their difference in azimuth. In each model, the constant
of proportionality is the telescope’s slew rate, which can range from
less than a degree up to tens of degrees per second.

When choosing parameters for testing, we simplified our param-
eter space to two quantities:

e Traversal Budget 8 = Budget X SlewRate — the total dis-
tance the telescope can traverse;
e Dwell Effort D = DwellTime x SlewRate — the effective
observation time.

Given these two quantities, the slew rate uniformly scales node
values, edge costs, and time budget T and so is not expected to
change the outcome. We considered nine scenarios (8, D):

S1: (1600, 192),  S2: (1600, 128),  S3: (1600, 64),
S4: (3200, 192),  S5: (3200, 128),  S6: (3200, 64),
S7: (4800, 192),  S8: (4800, 128),  S9: (4800, 64).

Larger B permits more exploration, while a larger ratio of 8 to D
reduces dwell times and so permits more total slew time.

Strategies were evaluated based on the fraction of total map
likelihood contained in tiles visited within the time budget, and
on time needed to compute the path on a 2.3 GHz Intel Xeon Gold
5118 processor.

Results. Figure 5 illustrates the fraction of total map likelihood col-
lected by the path produced by each strategy. As expected, scenarios
that restrict the overall traversal budget, or which require more
time spent dwelling at each tile, more severely limit the likelihood
that can be collected.

For the map tested here, the different strategies collected roughly
the same fraction of total likelihood for a given budget, assuming
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Figure 5: Fraction of map likelihood collected across sce-
narios and methods. Left surface: geodesic movement; right
surface: two-axis movement.

Figure 6: Paths found by Greedy vs. Gurobi for test burst.

either geodesic or two-axis movement. The greedy method was
consistently slightly worse than the others, though not dramatically
so. We note, however, that while our example models the common
case of well-localized GRBs at moderate inclination to the zenith,
we have encountered other scenarios with different behavior. In
particular, (1) with two-axis movement, bursts centered near the
zenith are challenging for simpler heuristics because small changes
in azimuth have high movement cost, and (2) if the containment
region is not compact but consists of multiple, widely-separated
patches in the sky, simpler heuristics are again disadvantaged.

In terms of running time, a greedy solution was typically found
within 1074 s. All other approaches required substantially longer
— more than 0.1 s for simulated annealing and 1-10 s for other
heuristics. Given the large gap in running time between greedy
and the other heuristics, there remains ample room to develop
computationally efficient approximations or other combinatorial
strategies for this problem that perform well even in more complex
scenarios. As evidence that improvement on greedy is possible,
Figure 6 compares the paths computed by greedy vs. ILP for the
case of geodesic movement. We note that the greedy path contains
many long edges, including edges that cross other edges, while the
ILP-based path (which recovers slightly more likelihood) does not.
We conjecture that spanning-tree approaches similar to those used
to approximate TSP might yield better solutions in practice.

6 Conclusions and Future Work

This paper describes our ongoing efforts toward enhancing co-
ordinated multi-wavelength observations of astrophysical tran-
sients such as gamma-ray bursts (GRBs). The Advanced Particle-
astrophysics Telescope (APT) is a mission concept for a space-borne
gamma-ray instrument, and we anticipate the launch of its Antarc-
tic Demonstrator (ADAPT) on a high-altitude balloon at the end
of 2026. Toward prompt optical observations of GRBs, APT and
ADAPT will detect, reconstruct, and localize GRBs to a point source
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or a likelihood map using onboard computation. Optical telescopes
may then search for the GRB, guided by the likelihood map and the
search strategies we have presented. Ongoing efforts will improve
the algorithms discussed in this paper, better model the instrument
response and background, explore tradeoffs between computational
speed and accuracy, and evaluate a broader class of likelihood maps.
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