
ECRTS 2024 Industrial Challenge Proposal:

Elastic Scheduling for ARM AR HUD

Marion Sudvarg, Ao Li, Chris Gill, Ning Zhang
Washington University in St. Louis

(msudvarg, ao, cdgill, zhang.ning)@wustl.edu

June 2024

Abstract

This early stage proposal outlines a proposed solution to the scheduling
problems presented by the AR HUD application from ARM’s challenge
to the ECRTS community. We suggest that the dataflow application
can be modeled as a collection of tasks with harmonic period relation-
ships reflecting the flow of data among them. By extending our prior
work on elastic scheduling of dataflow applications with harmonic pe-
riod constraints, which proved effective when applied to ORB-SLAM3 in
resource-constrained environments, we believe that we can produce a pe-
riod adaptation model to guarantee schedulability of the AR HUD’s tasks
even in dynamic environments and systems.

1 Introduction

Motivation: This short paper serves as an early stage proposal for the indus-
trial challenge at the 36th Euromicro Conference on Real-Time Systems (ECRTS
2024). This year’s industrial challenge was presented by ARM during ECRTS
2022 [1] and relates to an automotive augmented reality heads-up-display (AR
HUD) to be projected in real time into the driver’s field of view.

Challenge Background: The main activities of the challenge are analysis
of the worst-case execution times of each application task and optimization of
the application to meet its desired real-time performance requirements, to in-
clude data-flow analysis, design of new scheduling policies, resource mapping,
and performance isolation to prevent interference due to shared resource con-
tention. This proposal focuses on scheduling policy design. It assumes that
methodologies to characterize execution times are already well established.

The AR HUD implementation presented by ARM is illustrated in [1, Figure
2], which we reproduce here as Figure 1. It will be deployed on a system on chip
(SoC) with a multicore CPU, a GPU, and possibly a dedicated neural process-
ing unit (NPU). The software application uses OV2SLAM [8] to determine the

1



vehicle’s orientation and trajectory and to generate a map of its surroundings.
This is used to generate the projected images, which are oriented according to
an estimate of the driver’s head pose.

1:4 Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm

objects diminishes greatly beyond 7m – this factor can have implications on the complexity
of the required eye tracking/head pose estimation function. Finally, high frame rates are
necessary to avoid negatively impacting the user experience.

The implementation of an AR HUD system requires several functions, which can be
decomposed into different software tasks. Figure 2 shows those functions, their decomposi-
tion into software tasks and a hypothetical mapping of such tasks onto the SoC compute
resources (please refer to Section 2.5 for more details on the target hardware platform). The
decomposition shows that we have a mix of real-time critical tasks and high-priority tasks,
which can be mapped onto different concurrent CPU threads, thus making this case study
non-trivial for real-time analysis. The head pose estimation task, implemented through a
neural network, benefits from being mapped onto a high-throughput accelerator, either a
GPU or a dedicated Neural Processing Unit (NPU). The following subsections will provide a
detailed description of the tasks.

Ext. Camera L

Ext. Camera R

Int. Camera

Ext.
Frame L

Ext.
Frame R

Frame Head Pose
Estimation

Front-End

Image
Pre-Proc.

Keypoints
Tracking

Outliers
Filtering

Pose
Estimation

Keyframe
Creation 

zState Optimization

Local Bundle
Adjustment

Keyframes
Filtering 

Mapping

Stereo/Temporal
Triangulation

Local Map
Tracking

CPU thread 0

CPU thread 1 CPU thread 2

GPU / NPU

SLAM

3D Map &
Position /

Orientation

Head
Pose

In-memory buffer

Real-time critical task

High-priority task

Frame Preparation

CPU thread 3

CAN

Instrument Data

Render Frame

GPU

Rendered
Frame

DPU

NIC

Int. Frame

Figure 2 Software tasks comprising the AR HUD case study and their hypothetical mapping
onto the SoC compute resources. Purple blocks represent real-time critical tasks, while yellow blocks
represent non-critical, high-priority, tasks. Red contours highlight the mapping to the compute
blocks, i.e., CPU threads and GPU/NPU tasks. The arrows indicate the high-level data flow.

2.1 SLAM
A Visual Simultaneous Localization and Mapping (SLAM) function is required to determine
the orientation and trajectory of the vehicle and to generate a map of its surroundings. The
output of this function is then used to generate the HUD graphic images and to position
them within the driver’s FOV.

The SLAM implementation selected for this case study is based on OV2SLAM [5], a high-
performance feature-based SLAM supporting both monocular or stereo camera setups. While
other SLAM techniques can offer improved accuracy, OV2SLAM is one of the techniques

Figure 1: AR HUD software system design [1, Figure 2].

ARM’s proposed solution decomposes the application into multiple critical
and high-priority tasks, which are mapped onto concurrent CPU threads. The
SLAM front-end tasks and stereo/temporal triangulation are considered critical,
and must run at the same rate as camera frame acquisition. On the other hand,
local map tracking is high-priority but non-critical, as jobs can be aborted if a
new keyframe becomes available before the previous one is processed; however,
it is handled by the same thread as the critical triangulation task. Another
thread performs bundle adjustment and filters redundant keyframes; these are
also considered non-critical, as they are optimization tasks. Another thread
runs the critical task of preparing the image frame to project on the HUD.

The challenge, then, is to construct a scheduling policy that enables the
desired timing semantics of the application to be met: critical tasks should
complete according to the specified framerate, while high-priority tasks should
also run when possible. Guarantees should be maintained even in dynamic
environments where workloads might be dependent on external events or inputs
(e.g., in crowded, dense urban driving scenarios). Simply prioritizing based on
criticality may result in poor system utilization [14, 4, 2]; the scheduling policy
should be aware of such pitfalls, and allow (when possible) concurrent execution
of general-purpose or background tasks.

2



Our Proposal: Buttazzo’s elastic real-time scheduling model provides a frame-
work for dynamic task adaptation to guarantee schedulability even on a system
that becomes overloaded [5, 6]. In recent work presented at RTAS, we proposed
a new extension of elastic scheduling to systems that constrain task periods to be
harmonic, then demonstrated an application of this model to two dataflow appli-
cations [13]. Our framework allows ORB-SLAM3 [7], running atop ROS2 [12],
to adjust task periods in response to changes in available CPU utilization. Com-
pared to a baseline implementation where jobs may be dropped if they overrun
their deadlines, or even an integrated ML-based implementation that intelli-
gently drops input frames and keyframes in response to overload, our elastic
scheduling framework produced more accurate maps of the environment.

We propose to extend our model to address ARM’s challenge. The dataflow
semantics of the AR HUD application pipeline can be reflected by harmonic
period relationships among its separate tasks. For example, the SLAM front-
end must execute at the same rate as frame acquisition; the local map tracking
task’s period should be some integer multiple of the front-end’s. Given a fast
enough CPU, all tasks can execute at their maximum desired rates (e.g., 60 Hz,
equivalent to the fastest possible camera frame acquisition rate ). However, if
the system cannot sustain this (e.g., due to complex environments or interfer-
ence tasks), task periods and the harmonic relationships among them can be
adjusted. For example, the front-end’s period can be increased, and the map
tracking task’s period can be set to double that of the front-end. This means
that only every other frame is processed as a keyframe, but this keeps timing de-
terministic, and it avoids wasted execution due to dropping a partially-executed
keyframe if a new one arrives.

Open Challenges: Applying our model to ARM’s AR HUD application im-
poses new challenges not addressed in our prior work in [13]. Chief among these
are an extension of the harmonic elastic scheduling model to multiprocessor
scheduling; our work considered only scheduling on a uniprocessor system. We
also need to consider the implications of dynamic execution times. The problem
of period assignment under the harmonic elastic scheduling model is NP-hard,
but we demonstrated an efficient algorithm for online adaptation in response to
changes in available CPU utilization. An algorithm that can respond to both
dynamic resource availability and execution times is needed for this challenge.
We discuss these further in Section 3.

2 Background

Buttazzo’s elastic model for implicit-deadline tasks on a uniprocessor [5, 6] char-
acterizes each task τi=(Ci, T

min
i , Tmax

i , Ti, Ei) by five non-negative parameters:
Ci (the task’s worst-case execution time); Tmin

i (the task’s minimum period,
i.e., its nominal value when executing at the desired rate in an uncompressed
state); Tmax

i (its maximum period, beyond which correct behavior is not main-
tained); Ti (the task’s assigned period, Tmin

i ≤ Ti ≤ Tmax
i ); and Ei (a constant

representing “the flexibility of the task to vary its utilization” [5]). From these

3



parameters are derived the corresponding values Ui=Ci/Ti, Umin
i =Ci/T

max
i ,

and Umax
i =Ci/T

min
i .

Chantem et al. formulated elastic scheduling as a constrained optimization
problem. If a system is overloaded, then task utilizations are reduced (“com-
pressed”) by assigning them the values that satisfy the following:

min
Ui

n∑
i=1

1

Ei
(Umax

i − Ui)
2 (1a)

s.t.
∑
i

Ui ≤ UD and (1b)

∀i, Umin
i ≤ Ui ≤ Umax

i (1c)

where UD is the schedulable utilization bound of the system. In [13], we con-
sidered the case that periods must also remain harmonic, adding the following
additional constraint:

∀i,j , Ti/Tj ∈ N+ or Tj/Ti ∈ N+ (2)

We also proposed a variation of the problem, “the ordered harmonic
elastic problem”, where task periods must be selected to respect some total
ordering assigned a priori. This is a natural restriction in several applications,
including in the dataflow pipelines found in many SLAM systems.

Though the optimization problem given by Expressions 1 and 2 is NP-hard
in general, we demonstrated that offline construction of a lookup table enables
polynomial-time reassignment of task periods satisfying the ordered harmonic
elastic problem in response to online changes in available CPU utilization. We
therefore propose a similar approach for ARM’s AR HUD application, though
this will require extensions to our prior model. The next section outlines the
proposed approach.

3 Elastic Scheduling Model

In this proposal, we focus only on CPU-based scheduling and execution. In a
full system, those tasks on the GPU/NPU must be considered as well, but if
they have dedicated resources (i.e., if head pose estimation has exclusive access
to an NPU, and frame rendering to a GPU), these do not contribute to the
challenge of scheduling.

3.1 Quantify period ranges and characterize relationships

We begin by identifying the acceptable period ranges for each task, as well as
the relationships among those periods imposed by the dataflow semantics of the
application. We work from the outside in by considering the camera framerate
as well as the requirements for visually smooth frame rendering.

Per the challenge details in [1], frame acquisition is expected be performed
in the range 30–60 frames per second; the SLAM front-end task should therefore

4



be assigned a period in the range 17–33ms. The minimum periods of all other
tasks should also be 17ms: ideally, and without resource constraints, all tasks
should be invoked for every camera frame at 60 fps.

The maximum period of frame preparation should be based on the lowest
framerate that still delivers a sufficiently smooth experience to the driver (e.g.,
100ms). Characterizing maximum acceptable periods for stereo/temporal tri-
angulation, map tracking, bundle adjustment, and keyframe filtering require
domain knowledge and understanding of the algorithms used, although empir-
ical studies may be useful in finding an upper bound that still produces useful
results. For example, in our studies of ORB-SLAM3, we found that map accu-
racy rapidly increased for image processing periods above 200ms [13, Fig. 7].
For illustrative purposes, we reproduce the result in Figure 2.

0 100 200
(Rmax−R)2

0

2000

Er
ro
r

Best Fit

Figure 2: Upper-bounding image processing period for ORB-SLAM3 [13, Fig.
7].

An ordering may also be imposed on task periods based on system require-
ments. Again, domain knowledge is required here, but we propose to constrain
the ordering as follows:

Front-End ≤ Triangulation ≤ Frame Prep. ≤ Tracking ≤ Bundle Adj. ≤ Keyframe Filter

3.2 Identify Elastic Constants

Though the elastic constant Ei assigned to each task τi is intended to repre-
sent “the flexibility of the task to vary its utilization” [5], the elastic objective
minimized in Expression 1a gives rise to a more quantitative notion of elastic-
ity based on the first-order error induced by individually decreasing the rate of
each task from its fastest desired value. We introduced this idea in [13] and
demonstrated that it is effective in assigning elastic constants for the tasks that
compose ORB-SLAM3 (see Figure 2 as an example).

This assumes, however, a metric by which application outcome can be quan-
tified. For SLAM in isolation, we used the mean translational error of the
produced map as our error metric in [13]. A similar notion may be applied to
the AR HUD, e.g., error in predicted vehicle orientation and trajectory, or error
in the map of its surroundings, might define the loss against which we measure
elastic constants. However, there is also a penalty in terms of driver experience
associated with decreasing the framerate of the display; incorporating human

5



notions of “importance” will require further input from the stakeholders of this
challenge.

3.3 Scheduling

We suggest that each CPU-based task should be assigned its own thread. This
allows for independent scheduling, and also reduces potential issues related to
mixed-criticality scheduling (e.g., whereby a critical task needs to execute, but
its thread is busy with a non-critical workload).

On a single processor, tasks can be scheduled according to a fixed-priority
rate monotonic scheme or with EDF; since periods are harmonic, both achieve
a utilization bound of 1. Under the assumption that task execution times have
already been characterized (for this proposal, we are not addressing this aspect
of the challenge), utilizations corresponding to the minimum periods can be
computed. If the total utilization exceeds the bound, our techniques in [13]
can assign harmonic periods that optimize the elastic objective (Expression 1a)
within the constraints of schedulability.

However, effective multiprocessor scheduling is necessary to realize this ap-
plication. Under the fluid scheduling model [3], each task is assigned a fraction
of a processor at each instance in time. It is a convenient abstraction where
the schedulable utilization bound UD is equal to the number of processor cores.
However, it often remains impractical in real systems [11]. A more practical
solution is global EDF scheduling, where at any instant in time, those jobs
with the earliest absolute deadlines are selected for execution. Goossens et al.
showed [9, Theorem 5] that a set Γ of implicit-deadline tasks is schedulable on
m processors if: ∑

τi∈Γ

Ui ≤ m− (m− 1) ·max
τi∈Γ

{Ui} (3)

Our approach in [13] for solving the problem on a uniprocessor naturally
extends to this schedulability condition. The approach involves enumerating all
possible sequences of integer multiples among task periods, given their accept-
able ranges. As a simple example, if task τ1 can take periods in the range [2, 3],
τ2 can take periods in the range [4, 5], and τ3 can take periods in the range [5, 8]
then {1, 1} and {1, 2} are the possible sequences of multipliers. For a given
utilization bound, the period assignment that arises from each sequence (if one
exists) for that bound is input to Expression 1a; the assignment that minimizes
that objective is then used.

Since the task with the maximum utilization does not change for a given
sequence of multipliers, the approach only needs to be modified slightly for the
schedulability condition in Expression 3. Rather than a fixed utilization bound,
the utilization bound is recomputed for each sequence for the given number of
available cores.

6



3.4 Online Adaptation

Our goal is not merely to assign periods to tasks offline to produce a schedulable
system. Rather, we would like to use elastic scheduling to enable online task
adaptation. This may be necessary under two types of scenarios.

1. Changes in Available Resources: The amount of CPU utilization avail-
able to the AR HUD application’s tasks may change for a number of reasons.
For example, a CPU core might go offline, CPU speed may throttle down in
DVFS-enabled systems, or other tasks (e.g., the aggressor workloads mentioned
in the challenge [1] or background execution) may consume CPU time.

In these cases, it should be straightforward under the uniprocessor, fluid, and
global EDF scheduling paradigms to adapt task periods efficiently. Extending
our techniques in [13] to fluid and global EDF should be straightforward, as we
argue above; nonetheless, efforts to formalize these algorithms are ongoing.

2. Changes in Execution Time: Individual task execution times may
change for several reasons. Workloads may depend on the environment; for
example, keypoint tracking may require more computation in crowded driving
environments where more object features are detected. Workloads may also
vary with shared resource contention; e.g., interference with access to caches,
the memory bus and DRAM row buffers, I/O subsystems, and OS queues can
increase execution times significantly. Existing tools can help to quantify the
extent to which such interference is possible, e.g., our own attack-based tool
PolyRhythm [10].

The algorithms we have developed and proposed for polynomial-time task
adaptation assume that task execution times remain fixed. If execution times
change, the lookup tables used may have to be regenerated. We found that this
can be done in under 10ms for systems of up to 8 elastic tasks [13]; since the AR
HUD application only has 6 CPU-based elastic tasks, this may still be feasible
online. However, further evaluation is needed.

4 Conclusion

In this early stage proposal, we have suggested applying our harmonic elastic
task model from [1] to the ARM AU HUD application. We look forward to
discussing these ideas with the stakeholders at ARM and the broader real-time
systems community. If these ideas have merit, we will develop the scheduling
algorithms more formally, and apply and evaluate them in the software packages
that ARM has provided.

References

[1] Matteo Andreozzi, Giacomo Gabrielli, Balaji Venu, and Giacomo
Travaglini. Industrial Challenge 2022: A High-Performance Real-Time
Case Study on Arm. In Martina Maggio, editor, 34th Euromicro Conference

7



on Real-Time Systems (ECRTS 2022), volume 231 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 1:1–1:15, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[2] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems. In 2012
24th Euromicro Conference on Real-Time Systems, pages 145–154, 2012.

[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, Jun 1996.

[4] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Al-
berto Marchetti-Spaccamela, Nicole Megow, and Leen Stougie. Schedul-
ing real-time mixed-criticality jobs. IEEE Transactions on Computers,
61(8):1140–1152, 2012.

[5] Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni. Elastic Task Model
for Adaptive Rate Control. In IEEE Real-Time Systems Symposium, 1998.

[6] Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni.
Elastic Scheduling for Flexible Workload Management. IEEE Transactions
on Computers, 51(3):289–302, March 2002.

[7] Carlos Campos, Richard Elvira, Juan J. Gómez Rodŕıguez, José M.
M. Montiel, and Juan D. Tardós. Orb-slam3: An accurate open-source
library for visual, visual–inertial, and multimap slam. IEEE Transactions
on Robotics, 37(6):1874–1890, 2021.

[8] Maxime Ferrera, Alexandre Eudes, Julien Moras, Martial Sanfourche, and

Guy Le Besnerais. OV2SLAM : A fully online and versatile visual SLAM
for real-time applications. CoRR, abs/2102.04060, 2021.

[9] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling
of periodic task systems on multiprocessors. Real-Time Systems, 25(2):187–
205, Sep 2003.

[10] Ao Li, Marion Sudvarg, Han Liu, Zhiyuan Yu, Chris Gill, and Ning Zhang.
Polyrhythm: Adaptive tuning of a multi-channel attack template for timing
interference. In 2022 IEEE Real-Time Systems Symposium (RTSS), pages
225–239. IEEE, 2022.

[11] James Orr and Sanjoy Baruah. Multiprocessor scheduling of elastic tasks.
In Proc. of 27th International Conference on Real-Time Networks and Sys-
tems, pages 133–142. ACM, 2019.

[12] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software, vol-
ume 3, page 5. Kobe, Japan, 2009.

8



[13] Marion Sudvarg, Ao Li, Daisy Wang, Sanjoy Baruah, Jeremy Buhler, Chris
Gill, Ning Zhang, and Pontus Ekberg. Elastic scheduling for harmonic task
systems. In Proceedings of the 30th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS’24). IEEE Computer Society
Press., 2024.

[14] Steve Vestal. Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance. In 28th IEEE international real-
time systems symposium (RTSS 2007), pages 239–243. IEEE, 2007.

9


