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Multi-axial real-time hybrid simulation (maRTHS) uses multiple hydraulic
actuators to apply loads and deform experimental substructures, enacting
both translational and rotational motion. This allows for an increased level of
realism in seismic testing. However, this also demands the implementation of
multiple-input, multiple-output control strategies with complex nonlinear
behaviors. To realize true real-time hybrid simulation at the necessary sub-
millisecond timescales, computational platforms will need to support these
complexities at scale, while still providing deadline assurance. This paper
presents initial work towards supporting (and is influenced by the need for)
envisioned larger-scale future experiments based on the current maRTHS
benchmark: it discusses aspects of hardware, operating system kernels,
runtime middleware, and scheduling theory that may be leveraged or
developed to meet those goals. This work aims to create new concurrency
platforms capable of managing task scheduling and adaptive event handling for
computationally intensive numerical simulation and control models like those for
the maRTHS benchmark problem. These should support real-time behavior at
millisecond timescales, even for large complex structures with thousands of
degrees of freedom. Temporal guarantees should be maintained across
behavioral and computational mode changes, e.g., linear to nonlinear control.
Pursuant to this goal, preliminary scalability analysis is conducted towards
designing future maRTHS experiments. The results demonstrate that the
increased capabilities of modern hardware architectures are able to handle
larger finite element models compared to prior work, while imposing the
same latency constraints. However, the results also illustrate a subtle
challenge: with larger numbers of CPU cores, thread coordination incurs
more overhead. These results provide insight into the computational
requirements to support envisioned future experiments that will take the
maRTHS benchmark problem to nine stories and beyond in scale. In
particular, this paper (1) re-evaluates scalability of prior work on current
platform hardware, and (2) assesses the resource demands of a basic smaller
scale model from which to gauge the projected scalability of the new maRTHS
benchmark as ever larger and more complex models are integrated within it.
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1 Introduction

Real-Time Hybrid Simulation (RTHS) is a powerful
technique for evaluating the behaviors of complex structures
under realistic and often adverse conditions (e.g., in the domain
of natural hazards engineering). The state of the art in RTHS has
evolved significantly over the past decades: although initially
even simple models were challenging to run at sufficiently fine-
grained (e.g., millisecond) time-scales to be fully physically
realistic based on dynamics of the modes that dominate the
behavior in mechanical systems (Ferry et al., 2013),
subsequent advances in real-time scheduling theory (Li et al.,
2014) and concurrency platform design (Ferry et al., 2014a)
allowed physically realistic RTHS experiments to be run, at
scales corresponding to a nine-story building.

Despite those advances, three primary limitations of the state of
the art still must be addressed in order to achieve envisioned next-
generation RTHS experiments whose complexity, scale, and
dynamics may require further advances in real-time scheduling
theory and its application to modern computational platforms:
(1) overheads from communication across chip sockets, barrier
synchronization mechanisms, and un-optimized task code; (2)
execution only on conventional multicore and multiprocessor
devices, which leaves the capacity of GPUs and FPGAs that are
often available on modern endsystems largely unused; and (3) static
assignment of which jobs are released onto which processors and at
what periodic rates, which limits the system’s ability to adjust
resource utilization.

This article explores the first of those issues in the context of
prior work and of a newly developed experimental benchmark
control problem for multi-axial real-time hybrid simulation
(maRTHS) (Condori et al., 2023). The semantics of the maRTHS
benchmark expose new challenges toward achieving realistic
millisecond-scale RTHS beyond those in prior work, including
increased control complexity associated with multiple actuators
that produce both translational and rotational motion, as well as
the more demanding numerical models for simulating responses to
those motions in the virtual substructure. For both the models used
in prior work and a basic version of the maRTHS benchmark, this
paper examines to what extent the computational performance of
modern multicore hardware may be harnessed to allow significantly
larger models to be used, which also motivates leveraging hardware-
optimized libraries (e.g., BLAS).

The rest of this paper is structured as follows. Section 2 surveys
prior work and provides background information on the models
used in the evaluations. Section 3 provides an overview of the
experiments that were run, including single-core (Section 4) and
multi-core (Section 5) evaluations of models used in prior work, as
well as of a basic model of the maRTHS benchmark (Section 6).
Finally, Section 7 concludes this paper’s discussion and outlines
directions for future work including (1) exploiting new high-
performance concurrency platform frameworks (e.g., OpenMP
5.3), (2) re-targeting real-time tasks to run on other devices (e.g.,
GPUs and FPGAs) at millisecond time-scales, and (3) examining
how new elastic and mixed-criticality real-time scheduling
techniques may be developed and exploited to reallocate platform
resources dynamically at run-time, to optimize performance of
maRTHS experiments and to adapt to changing operating

conditions while maintaining schedulability at millisecond
timescales.

2 Background and related work

The RT-OpenMP concurrency platform for parallel real-time
computing was applied to Real-Time Hybrid Simulation (RTHS) a
little more than a decade ago (Ferry et al., 2013). Shortly thereafter,
the CyberMech concurrency platform exploited a new design and
implementation to achieve for the first time millisecond resolution
RTHS for thousand-degree-of-freedom finite element models (Ferry
et al., 2014a; b) including for the nine-story structural model used as
a baseline for comparison in this article. Results obtained on a 16-
core machine with eight cores per chip socket revealed scalability
limits due to inter-thread communication costs, especially as the
number of cores exceeded those in a single chip socket (Ferry
et al., 2014a).

The CyberMech platform was further refined to provide
adaptive reallocation of resources during on-line operation, based
on newly developed elastic scheduling techniques for parallel real-
time systems (Orr et al., 2018; Orr et al., 2019; Orr et al., 2020).
Elastic scheduling places further demands on the concurrency
platform, to be able to adapt tasks’ resource utilizations by
changing tasks’ rates, workloads, and/or critical path lengths
(a.k.a. spans) rapidly within the timescales at which tasks are
scheduled, while still meeting deadlines. Those capabilities were
then used to conduct a new generation of virtual RTHS experiments
involving control of a nonlinear physical plant with parametric
uncertainties (Condori et al., 2020). This in turn places even greater
and more dynamic computational demand on the concurrency
platform, both to manage resource reallocation and within the
nonlinear Bayesian estimator used to implement a nonlinear
robust controller.

The next-generation MechWorks concurrency platform,
currently under development, targets an even more demanding
category of RTHS, of which the multi-axial benchmark problem
(Condori et al., 2023) is an example. Although this initial
configuration of the multi-axial real-time hybrid simulation
(maRTHS) experiments involves only a single model that is
modest in scale, it offers an important starting point against
which relative demands can be gauged for (1) the structural
model as it scales up, (2) nonlinearity, multi-axial actuation, and
other complexities of the tracking and control problem, and (3)
adaptive resource reallocation to manage those complexities on-line
while ensuring schedulability, control stability, non-reachability of
adverse states, and other key safety properties.

3 Overview of experiments

To exploit parallelism to achieve millisecond-scale RTHS, Ferry
et al. (2014a,b) introduced CyberMech, a run-time platform written
in C++ that leverages OpenMP for multithreading and
multiprocessor execution. Condori et al. (2023) subsequently
developed the experimental benchmark control problem for
multi-axial real-time hybrid simulation (maRTHS benchmark),
which is implemented in MATLAB/Simulink R2019b. This article
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seeks to gauge the suitability and assess the limitations of
CyberMech as a platform to run the maRTHS benchmark,
towards addressing those limitations in the next-generation
MechWorks platform that is under development.

In addition to running the maRTHS benchmark itself, this paper
presents scalability studies of the nine-story structural model
analyzed by Ferry et al. (2014a); Ferry et al. (2014b) which is
particularly suitable as a benchmark to test the feasibility and
scalability of CyberMech because (1) it includes numerical
simulations with representations in a wide range of model
degrees of freedom (DoF) to choose from; and (2) the results can
be compared directly to the detailed analysis in the prior work of
Ferry et al. (2014a); Ferry et al. (2014b) to understand how the
computational platform has evolved, both in terms of software
support and the capabilities of the underlying hardware.

3.1 Nine-story structural model

Ohtori et al. (2004) proposed a benchmark control problem for
nine-story moment-resisting steel frame buildings for the SAC
project, which is representative of typical medium-rise buildings
in Los Angeles, California. The structural model was then analyzed
by Ferry et al. (2014a); Ferry et al. (2014b) to show the assurance of
real-time execution by enabling parallel computing. Details of the
computation and the structural model were provided by Aguilar
(2012) in the open-source RT-Frame2D example. Note that for
spatial discretization, they used one Bernoulli-Euler frame element
within each column and beam. The lumped mass matrix is used
where rotational inertia is ignored. Thus, they assigned a small value
of rotational mass.

A series of control tasks including active, passive, and semi-
active control strategies have been conducted using this benchmark
building model. In the RTHS test conducted by Ferry et al. (2014a);
Ferry et al. (2014b), it is fitted (in simulation) with a virtual
magneto-rheological damper. The model provides a useful vehicle
for analysis because scalability studies (to multiple cores and finer
granularity) already have been performed in the prior literature
(Ferry et al., 2014a; Ferry et al., 2014b). As a decade has since passed,
this provides an opportunity to re-evaluate the analysis using the
newer more capable hardware available, and to consider how
modern platforms can be used similarly to achieve desired real-
time performance of the maRTHS benchmark.

The model is implemented as a standalone virtual RTHS
(vRTHS), in which the control loop (transfer of impulse, physical
response, and sensor readouts) for the physical specimen under
examination is implemented virtually. Typically this is performed on
a separate PC running Speedgoat or Simulink Real-Time (aka xPC-
Target). In the standalone implementation, all computations (both
for the simulated building model and simulated physical target) are
performed on the same platform, which enables rapid
experimentation over a large number of tunable parameters.
Experiments are run over large numbers of processor cores
(1–127), with different multithreading implementations
(OpenMP and BLAS), and workload granularities (23 model
implementations with different numbers of degrees of freedom).

The model is subjected to ground motions from the
1940 Imperial Valley earthquake recorded at El Centro. The

simulation is performed in real-time at a 1,024 Hz rate, executing
for 61,440 iterations— 1 min total, except when there are overruns.1

The OpenMP-based multithreaded federated scheduling service
from Ferry et al. (2014a) is used to launch the simulation in
CyberMech, which distributes threads among specified cores,
assigns them to the Linux SCHED_FIFO real-time scheduling
class, and allows them to be released synchronously at the
correct interval.

At each iteration, given a time step t, the implementation
integrates over Δt time units using the same computation
described in Ferry et al. (2014a), which is reiterated here.

1. Numerical substructure:

Mn €Ut+Δt + Cn _Ut+Δt +KnUt+Δt � −MnΓ€xg
t+Δt − fp

t (1)
This equation is solved by the Newmark-beta method.

~M
n � Mn + γΔtCn + βΔt2Kn (2a)
~Ft+Δt � Ft −KnUt − Cn _Ut (2b)

€Ut+Δt � ~M
n[ ]−1 ~Ft+Δt (2c)

_U
n

t+Δt � _U
n

t + Δt 1 − γ( ) €Un

t + γ €U
n

t+Δt( ) (2d)
Un

t+Δt � Un
t + Δt _Un

t + 0.5Δt2 1 − 2β( ) €Un

t + 2β €U
n

t+Δt( ) (2e)

Where β and γ are algorithmic parameters for the Newmark-
beta method. The value €xg is the ground acceleration; fp is the
feedback force vector; U, _U, and €U are displacement, velocity, and
acceleration vectors; ~M

n
is an effective mass matrix for numerical

substructure; F is an exerted force matrix; ~F is a pseudo-force vector;
and Mn, Kn, and Cn are mass, stiffness, and damping matrices.

In the vRTHS setup, the structural model is decomposed into
numerical and virtual physical substructures, with 14 model degrees
of freedom specified as part of the physical substructure. Therefore,
for n degrees of freedom, each matrix and vector are of dimension
(n − 14) × (n − 14) and (n − 14) × 1, respectively.

2. Feedback force from magnetorheological damper (Spencer
et al., 1997):

fp � fc sgn _xmr( ) + c0 _xmr + f0 (3)
where c0 is the damping coefficient, fc is the frictional force related
to the fluid yield stress, and f0 is an offset to account for the nonzero
mean due to the presence of the accumulator.

The structural model in Ferry et al. (2014a) used n � 198 degrees
of freedom; in Sections 4, 5 of this article, we carry out RTHS tests
with larger degrees of freedom by finer meshes. To generate finer
meshes, we use multiple Euler-Bernoulli beam elements within each
column and beam. More details about the structural model and its
implementation in code can be found in (Aguilar, 2012, Model 5).

1 For purposes of this scalability study, the simulation is allowed to slow its

rate in response to overruns—i.e., when a single iteration of a model with a

large number of degrees of freedom exceeds 1/1,024 s due to insufficient

processor cores—and record the corresponding execution times.
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3.2 Three-story multi-axial model

The experimental benchmark control problem for multi-axial
real-time hybrid simulation (maRTHS) recently proposed in
Condori et al. (2023) highlights several new challenges in RTHS
towardmore realistic large-scale structural experimentation. Among
those challenges is the increased computational complexity involved
in controlling multiple actuators to produce both translational and
rotational motion, as well as higher-order explicit numerical
methods. Due to the nonlinear coordinate transformations,
utilizing multi-axial actuators increases complexity due to
nonlinearities and internal coupling, which can require solving
nonlinear problems (Nakata et al., 2010).

Toward addressing this increased complexity, a representative
simulation model is implemented for the maRTHS benchmark as a
standalone virtual RTHS. As an initial proof-of-concept, all
computation is performed on a single machine, similarly to the
nine-story structural model. This allows us to analyze all
computational costs associated with the simulation uniformly on
a single platform, and to identify the speedups gained by the
improved parallelism available in a single chip socket.

The model is again subjected to 1 min of recorded ground
motion from the Imperial Valley earthquake at a 1,024 Hz rate. The
same multi-threaded federated scheduling service is used to launch
the simulation in CyberMech. At each iteration, given a time step t,
the implementation integrates over Δt time units using the following
methodology.

1. Numerical substructure:

Mn €U
n

t+Δt + Cn _U
n

t+Δt +KnUn
t+Δt � −MnΓ€xg

t+Δt − fp
t (4a)

_U
n

t+Δt � _U
n

t + Δt 1 − γ( ) €Un

t + γ €U
n

t+Δt( ) (4b)
Un

t+Δt � Un
t + Δt _Un

t + 0.5Δt2 1 − 2β( ) €Un

t + 2β €U
n

t+Δt( ) (4c)

WhereMn, Cn,Kn,Un, _U
n
, and €U

n
are the mass, damping, and

stiffness matrices, and displacement, velocity, and acceleration
vectors, respectively, for the numerical substructure. The value of
€xg is the ground acceleration, Γ is a loading vector that describes
the inertial effects due to the ground acceleration, and fp is the
feedback force obtained from the physical substructure. The
Newmark method with parameters γ � 0.5 and β � 0.25 is used
to simulate the numerical substructure. From Un

t+Δt with a
coordinate transformation, target actuator displacements xn

t+Δt
are computed.

2. Linear quadratic Gaussian (LQG) control system: The control
system is composed of a deterministic LQR and a Kalman filter.
From the deterministic LQR, command signals to the actuators
u are computed:

u t( ) � KLQR
xk t( )

xn t( ) − x̂m t( )[ ] (5)

whereKLQR is the gain and x̂
m is the estimated displacements for the

actuators. The vectors xk and x̂m are computed from the continuous
state-space model for the Kalman filter.

_zk t( ) � Akzk t( ) + Bk u t( )
Up t( )[ ] (6a)

x̂m t( )
xk t( )[ ] � Ckzk t( ) +Dk u t( )

Up t( )[ ] (6b)

Where Ak, Bk, Ck, and Dk are the matrices for the continuous
Kalman filter state-space model. Note that Up is computed from the
control plant model.

3. Control plant model: A transfer function matrix with
command signals to the actuators u as inputs and measured
displacements xm as outputs is computed as

Hcp �
2165.2

s + 120( ) s + 90( )
s + 2.65( ) s + 40( ) 4.5394 × 106

s + 3
s + 3.5( ) s + 18.5( )

349.95
s + 120( ) s + 90( )
s + 2.65( ) s + 40( ) 1.9238 × 107

s + 5
s + 3.5( ) s + 18.5( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· 1
s2 + 100s + 6469

(7)
Then, this system is transformed to the following continuous state-
space form with measurement noise nm.

_zcp t( ) � Acpzcp t( ) + Bcpu t( ) (8a)
xm t( ) � Ccpzcp t( ) +Dcpu t( ) + nm t( ) (8b)

Where Acp, Bcp, Ccp, and Dcp are the matrices for the
continuous state-space model. The measurement noise is
assumed to follow a normal distribution: nm ~ N(0, σ2), where σ

is its standard deviation. Note that the LQG control system and the
control plant operate in a closed loop. Using the fourth-order
explicit Runge-Kutta method, x̂m

t+Δt is computed, from which the
physical displacement Û

p
t+Δt is computed using a coordinate

transformation.

4. Feedback force:

fp
t+Δt � Mp €̂U

p

t+Δt + Cp _̂U
p

t+Δt + KpÛ
p

t+Δt (9)
where Mp, Cp, Kp, Û

p
, _̂U

p
, and €̂U

p
are the mass, damping, and

stiffness matrices, and the estimated displacement, velocity, and
acceleration vectors, respectively, for the physical substructure. The
vectors _̂U

p

t+Δt and €̂U
p

t+Δt are computed using the forward
difference scheme:

_̂U
p

t+Δt � Û
p

t+Δt − Û
p

t( )/Δt, €̂U
p

t+Δt � _̂U
p

t+Δt − _̂U
p

t( )/Δt (10)

Further details of this maRTHS benchmark problem are given in
Condori et al. (2023).

3.3 Target computational platform

This paper extends the scalability analysis performed by Ferry
et al. (2014a); Ferry et al. (2014b) to a modern multicore CPU: in
particular, an AMD EPYC 9754 with 128 cores running at 3.1 GHz
with 128 GB of RAM and version 5.14.0 of the Linux kernel using the
Rocky 9.3 distribution. CyberMech is written in C++ and compiled
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using the GNU Compiler Collection’s C++ compiler (g++)
version 11.4.1.

All experiments are run using Linux’s SCHED_FIFO real-
time scheduling class. To improve temporal regularity of
execution, Simultaneous Multithreading and CPU throttling
are disabled at the hardware level, and real-time scheduler
throttling is disabled at the kernel level via proc pseudo-
filesystem interfaces.

Two alternative implementations of each model are
evaluated. In the first, OMP, matrix operations are written as
nested loops, and the outer loop is explicitly parallelized using
OpenMP pragmas. The second implementation, BLAS, uses the
OpenBLAS distribution of the Basic Linear Algebra Subprograms
(BLAS), which also accelerates operations using the Linear
Algebra PACKage (LAPACK). BLAS leverages OpenMP for
inter-processor parallelism, but also uses highly-optimized
code to improve memory and cache locality, as well as making
use of the AVX-512 vector extensions on the EPYC CPU. Note
that both the OMP and BLAS implementations use a call to
LAPACK’s dgetrs function to solve the linear equation in
Expression 2c.

4 Single-core scalability

In the decade since the scalability analysis in Ferry et al. (2014a);
Ferry et al. (2014b) was performed, CPU architectures have
improved significantly, both in the number of cores on a single
chip socket, as well as the performance of each individual core. This
section evaluates the nine-story linearized model described in
Section 3.1 on a single core of the CPU platform to consider (1)
how execution time scales with model size, and (2) for which model
sizes it is necessary to exploit multicore parallelism.

The size and complexity of the linearized model are scaled up by
increasing the number of degrees of freedom (DoFs) of the
numerical simulation. Note that by discretizing each frame and
beam with multiple elements, we construct mass, damping, and
stiffness matrices with large DoFs. DoFs used are {198, 216, 231, 249,

264, 282, 297, 315, 330, 348, 363, 381, 396, 414, 429, 447, 462, 480,
495, 513, 528, 858, 1,188}, for a total of 23 model sizes.

4.1 OMP

The execution times of each iteration of the purely OpenMP-
based implementation for each model size are first measured when
pinned to a single CPU core.

4.1.1 Execution time distributions
For each model size, the median and maximum execution times

are measured across the 61,440 iterations, along with the 99.865th

percentile, which captures times less than three standard deviations
(3σ) above the mean, assuming a Gaussian distribution. Results are
shown in Figure 1.

These results indicate that execution times tend to be very
consistent: the median and 3σ values for each model size are very
close, with the 3σ values never exceeding the median by more
than 187μs. Furthermore, even a single core of the AMD EPYC
CPU is very efficient: for models of up to 528 DoF, the 3σ
execution time does not exceed the 976.6 μs deadline imposed
by the 1,024 Hz rate (represented as a horizontal dashed line
in Figure 1).

However, occasional outliers inflate the worst-case execution
times. Within the 83 iterations that exceed the 3σ execution time for
each model size, the maximum time can reach as high as 770μs over
the median. These outliers are due to execution time
nondeterminism in the computational platform, not dynamic
modeling or variations in ground motions. In a hard real-time
hybrid simulation environment, where deadline misses must be
avoided, timely completion cannot be guaranteed on a single CPU
core for model sizes above 428 DoF. Investigation of the root causes
of the outliers, and further examination of techniques to improve
execution time stability and eliminate those outliers is
underway—including statically-compiling the binary, using less
aggressive compiler optimisation, isolating CPU cores from the
scheduler, or using a real-time patch of the Linux kernel or even
a real-time microkernel such as seL4 (seL4, 2024; Blackham
et al., 2011).

Nonetheless, even the worst-case execution times indicate
significant improvements in single-core performance over the last
decade. In (Ferry et al., 2014a; Figure 6), the authors were only able
to meet a 1 m deadline for models of up to about 400 DoF, even
using a very simple finite element model.2 In contrast, the maximum
time remains below 1 m for models of up to 428 DoF. Furthermore,
the 3σ time remains below 1m for up to 528 DoF, and is projected to
do so for up to 650 DoF. This suggests that if the root causes of the
outliers can be identified and addressed, it may be possible to achieve
millisecond-scale RTHS for models up to 650 degrees of freedom on
a single core.

FIGURE 1
OMP execution times on 1 CPU.

2 An exact value is not reported in the text, but (Ferry et al., 2014a; Figure 6)

provides an estimate.
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4.1.2 Execution time complexity
The numerical simulation for the nine-story building model

uses several matrix-vector multiplication operations. For a model
with d degrees of freedom, this implies an execution time
complexity of O(d2) — i.e., the execution time should scale
with the square of the model size. This provides a
straightforward way to estimate the execution time of a model
size that has not yet been tested. To evaluate how closely this
estimate is expected to reflect reality, both the median and 3σ
execution times are fitted to a quadratic function (the maximum
is not considered, due to the observed outliers). Results are shown
in Figure 2; a very close quadratic relationship between model
size and execution time is observed.

4.2 BLAS

The experiments above are now repeated for the BLAS
implementation of the numerical simulation.

4.2.1 Execution time distributions
For each model size, the median, 99.865th percentile (3σ), and

maximum execution times are again measured. Results are shown
in Figure 3.

These experiments indicate that not only is BLAS faster, but task
latency with it also may be more stable than the purely OpenMP-based
implementations of the equivalent nine-story building models. For
BLAS, the 3σ values never exceed the median by more than 53μs.
Furthermore, the maximum values are never more than 687μs above
the median for each model size. These outliers could be due to
nondeterministic cache behavior, which might be partially addressed
by BLAS and LAPACK’s optimizations to improve memory locality.
However, the numerical simulation contains loop operations that are
not straightforward to represent as matrix/vector operations, and
therefore cannot be accelerated with BLAS. These instead remain
parallelized with explicit OpenMP pragmas, and nondeterministic
overheads due to the runtime’s management of thread
synchronization may also contribute to worst-case overheads. Efforts
to verify this and address the issue are ongoing.

Moreover, BLAS enables timely simulation of even large numerical
models on a single core. Formodel sizes of up to 858DoF, the execution
time does not exceed the 976.6 μs deadline imposed by the 1,024 Hz
rate (represented as a horizontal dashed line in Figure 3). For 858 DoF,
themedian execution time is only 437 μs, the 3σ time is 490 μs, and the
maximum time is 897 μs.

4.2.2 Execution time complexity
For completeness, both the median and 3σ execution times for

BLAS are also fitted to a quadratic function. Results are shown in
Figure 4; a very close quadratic relationship between model size and
execution time is again observed.

4.2.3 Comparison to OMP
To better illustrate the improvements gained by using BLAS over

naïvely implementing matrix operations using nested loops, ratios of
the OMP to the BLAS execution time statistics are plotted
in Figure 5.

The median and 3σ execution times for the BLAS
implementation are 1.74 × to 4.38 × faster than OMP. In the

FIGURE 2
Quadratic relationship between model size and OMP execution time.

FIGURE 3
BLAS execution times on 1 CPU.
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worst case, the OMP implementation’s maximum time is 11.1 ×
greater than that of BLAS.

4.3 Discussion

The results of this section highlight the key point of this paper: RTHS
can benefit substantially from the vast improvements in computational
platforms realized over the last decade. Compared to the scalability
analysis performed by Ferry et al. (2014a), using BLAS in conjunction
with the high-end AMD EPYC architecture allows ~ 2 × larger models
to complete within a millisecond even on a single CPU core.

5 Scaling to multiple cores

The previous section demonstrated that the CyberMech platform,
coupled with highly-optimized BLAS-based implementations of matrix
operations, enables standalone vRTHS at 1,024 Hz even for large

models (858 DoF) on a single CPU core. As mentioned in the
introduction, this paper serves as a scalability study toward creating
new concurrency platforms to support multi-axial RTHS on multicore
and heterogeneous (e.g., GPU and FPGA-based) computational
platforms. One might assume, given the results of the previous
section, that these advanced platforms are unnecessary since high
performance can be extracted from even a single core.

However, several scenarios in RTHSmay arise inwhich a single core
is nonetheless insufficient. First, for complex built environments, larger
models with more degrees of freedom or faster rates may be necessary
for accurate numerical simulations. Second, the nine-story building
model uses very simple representations of the structural model, control
laws, and nonlinear behavior. The maRTHS benchmark problem
(Condori et al., 2023), for which results for initial scalability
experiments are presented in the next section, has more complex
behavior governed by actuators that apply forces along multiple
axes. Third, the experiments presented in this paper are standalone
vRTHS: numerical simulations are executed on a single host machine.
Recurrent workloads are therefore modeled as implicit-deadline real-
time tasks: each iteration needs only to complete prior to invocation of
the next iteration, and therefore the relative deadline is equal to the
iteration period. In a full RTHS setup where a control signal based on
the results of numerical analysis must be applied to the controlled plant
(i.e., the tested physical substructure), deadlines may be constrained to
be significantly shorter than the period, so that the resulting sensed state
of the plant can be used to update the simulation environment prior to
application of the next control signal.

These three scenarios suggest that at key points, scaling vRTHS
or RTHS to multicore machines may be necessary. This section
evaluates the OMP and BLAS implementations of the nine-story
structural model by scaling up to all 128 cores of the AMD
EPYC 9754 CPU.

5.1 OMP

As before, the execution times for each iteration of the OpenMP
implementation are measured for each model size. This time, the
model is allowed to take advantage of the parallelism provided by the

FIGURE 4
Quadratic relationship between model size and BLAS execution time.

FIGURE 5
Execution time ratios between OMP and BLAS implementations.
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128-core CPU, testing with 1–127 cores; core 0 is reserved for
operating system tasks and the CyberMech runtime’s management
thread, which performs dispatching and synchronization of the
recurrent workloads. In all, 127 × 23 � 2921 runs of
61,440 iterations each are performed.

5.1.1 Execution times for every run
Median execution times for each combination of model size and

number of cores are displayed as a heatmap in Figure 6. Similar
heatmaps for the 99.865th percentile (3σ) and maximum execution
values are shown in Supplementary Appendix 1.

FIGURE 6
Median OMP execution times for each combination of model size and number of cores.

FIGURE 7
OMP execution times for individual large model sizes.
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As expected, execution times continue to increase with model
size, even as the number of cores used by the greater number of
threads increases. Perhaps surprisingly, as the number of cores used
increases execution time decreases to a point but then begins to
increase slightly as more cores are used. This trend is examinedmore
closely, and a plausible explanation is provided, backed with
empirical evidence.

5.1.2 A closer look
To illustrate more clearly the effect observed above—that

increasing the number of cores allocated to the numerical
simulation improves execution time at first, but that after a
point, adding more cores increases the execution time—selected
plots of the execution time dependence on the number of cores for
individual model sizes are shown in Figure 7.

In the top plots of Figure 7, which show how execution time
scales with the number of cores for smaller models (198 and
315 DoF), an initial sharp decrease in execution time is observed
as the number of cores increases. This is followed by a roughly linear
increase in execution time with the number of cores. The effect is
more pronounced in the smaller model, and the larger model
appears to continue to benefit from a larger number of cores
compared to the smaller model. The bottom plots of Figure 7
show the execution time dependence on the number of cores for
larger models (528 and 1,188 DoF). The same trend emerges, where
adding cores provides diminishing returns, though the returns are
still present for larger numbers of cores compared to the smaller
model sizes.

Toward quantifying this effect, it is helpful to compare
the number of cores that provide the minimum median
execution time across each model size. These results are
plotted in Figure 8. The relationship between model size and
the optimal core count shows a positive correlation. For the
smallest model (198 DoF), six cores provide the best
performance. For the largest model (1,188 DoF), the best
performance is achieved with 42 cores, and not the full
127 available on the evaluation machine.

However, it may be observed that for model sizes from 216 to
528 degrees of freedom, the optimal number of cores remains 7. For

larger model sizes, the trend is roughly linear. The significant jump
from 7 to 22 cores when scaling from 528 to 858 DoF may be
explained, in part, by the underlying processor architecture. The
AMD EPYC 9754 CPU used in this evaluation has 128 “Zen 4c”
cores, grouped into “core complexes” (CCXs) each with eight cores
and an L3 cache they share. Execution on seven cores therefore
remains local to a single CCX, but because core 0 is reserved in the
experiment for the runtimemiddleware, scaling to eight cores means
execution spans two CCXs and the cores no longer share a single
L3 cache. Thus, when scaling tomodel sizes where seven cores are no
longer optimal, the transition to non-CCX-local execution means
more cores are needed to recover the overheads associated with
inter-CCX communication and cache non-locality.

5.1.3 A possible explanation
A possible explanation for the observed results is now proposed

and evaluated. In the smaller models especially, a roughly inverse
relationship between execution time and the number of cores is
observed up to a point, then a linear relationship as the number of
cores continues to grow. To help explain this, terminology from the
field of real-time computing is now introduced.

• τi denotes a task, or recurrent workload in an application. The
numerical simulation of the nine-story structural model is a
task, and a single iteration of that simulation is an instance of
the task, also referred to as a job.

• mi represents the number of CPU cores dedicated to executing
task τi.

• Ci represents the total workload of task τi, which is the total
CPU time necessary to complete a single job of the task. This
corresponds to its execution time when provided only a single
processor core.

• Li represents the task’s latency, and denotes the time from
when a job of the task begins execution to when it completes.

If task execution can be distributed evenly across cores, and
it runs on those cores without being preempted, then the
following relationship between workload and latency is
expected to hold:

Li � Ci

mi
(11)

However, OpenMP also incurs additional overhead related to
management of its threads, e.g., dispatching of work items and
barrier synchronization. Assuming that this overhead scales linearly
with the number of threads (e.g., each time a thread is added, a
constant amount w of additional overhead is accrued), then the
following relationship may capture latency more accurately:

Li � Ci

mi
+ w ·mi (12)

To test this hypothesis, the median workload Ci of the OpenMP
implementation when run on the target computational platform, as
a function of the model size d in degrees of freedom, is first
characterized. On a single core, mi � 1, allowing the following
expression for Ci(d) to be derived:

Ci d( ) � Li d( ) − w (13)

FIGURE 8
Best core count by model size for OMP.
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From the quadratic relationship for median execution times in
Figure 2, the following expression is obtained3 for Li(d):

Li d( ) � 2.64 · 10−6d2 − 4.64 · 10−4d + 7.41 · 10−2 (14)

OpenMP’s per-thread overhead w is then estimated by
finding the slope of the roughly linear portion (above ~ 20
cores) of the median execution times for 198 DoF (shown
in the top left of Figure 7). From this, w � 4.1 · 10−6
is obtained.

Putting the pieces together gives the following function for
latency as a function of model size and number of cores:

Li md, d( ) � 2.64 · 10−6d2 − 4.64 · 10−4d + 7.41 · 10−2
mi

+ 4.4 · 10−6 ·mi (15)

5.1.4 Validating the latency model
To test this model, this function is plotted side-by-side with the

median execution times for the models with 198, 315, 528, and

1,188 DoF. Results are shown in Figure 9: the latency model very
closely matches the observed values.

What the latency model says about the optimal number
of cores to allocate to the numerical simulation (i.e., for
each model size, which core count obtains the minimum
execution time) is now considered. The expression for latency
in Equation 12 can be used to find the minimum for a
given workload:

FIGURE 9
Comparison of median OMP execution times to latency model.

FIGURE 10
Best core count by number of DoF predicted by latency model
for OMP.

3 These coefficients are specific to the tested model on a given

computational platform. This characterization process must be

repeated when testing different models or different target computers.

They should not be affected by changing the simulated groundmotions, as

these only influence the values used by the computations, but not the

computational instructions themselves.
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δ

δm
Li m( ) � w − Ci

m2
(16)

Setting to 0 and solving for m, gives:

mmin �
��
Ci

w

√
(17)

Since Ci is quadratic in the number of degrees of freedom d, this
model is dominantly linear in d. To test this model against the
observed optimal values, Equation 17 is plotted against the series
illustrated in Figure 8. This side-by-side comparison is shown in
Figure 10: the optimal core count predicted by the latency model
remains reasonably close to the observed values, though the effects
of the underlying hardware architecture (inter-CCX communication
and issues of cache locality) may contribute to the observed
discrepancy.

5.2 BLAS

The previous section showed that re-implementing the matrix
operations in the simulation model using BLAS significantly
improved execution times, allowing larger models to be run on
just a single CPU core. Whether these improvements remain
consistent as the number of threads of execution is increased,
and whether the latency model still applies, is now examined by
repeating the above experiments for the BLAS implementation of
the numerical simulation of the nine-story structural model.
127 × 23 � 2921 runs of 61,440 iterations each are again
performed (with core 0 reserved for the operating system kernel
and the CyberMech runtime manager).

5.2.1 Execution times for every run
Median and maximum execution times for each combination of

model size and number of cores are displayed as heatmaps in
Figure 11. Supplementary Appendix 1 includes a similar heatmap
for the 99.865th percentile (3σ) execution values.

As with the OMP implementation, median execution times tend
to increase with model size, even as the number of cores increases.
Execution time decreases with the number of cores at first, but then
begins to increase slightly as more CPU cores are added. This trend
is investigated more closely, to see if it remains consistent with the
trends observed for the OMP implementation, in Section 5.2.3.

For the model sizes evaluated, the median execution times for
BLAS never exceed 963 μs, while the maximum execution time
remains under 1.21 m. In comparison, for the OMP
implementation, the median execution time reaches 3.26 m while
the maximum goes up to 3.54 m.

5.2.2 Comparison to OMP
Just by comparing the largest observed median and maximum

execution times for the BLAS and OMP implementations across all
runs, the BLAS implementation is significantly more efficient. To
better illustrate the improvements gained by using BLAS over
naïvely implementing matrix operations using nested loops,
ratios of the OMP execution times to the BLAS execution times
are shown in Figure 12.

On average, the median execution time achieved by BLAS is
1.76 × faster than that of the OMP implementation for the
equivalent model size and same number of cores. At best, BLAS,
achieves a median execution time 4.38 × faster than OMP. The
difference between the maximum execution times is even more
substantial, with BLAS achieving a maximum that is up to 15.8 ×
faster — 1.93 × faster on average—than OMP.

5.2.3 Individual model sizes
To investigate whether the trends observed for OpenMP extend

to the faster BLAS implementation, Figure 7 is replicated, plotting
the BLAS execution times with number of cores for individual
model sizes.

The top two plots of Figure 13 show how execution times
scale with the number of cores for smaller models (198 and
315 DoF); the bottom two show the same for larger models
(528 and 1,188 DoF). As observed for the OMP implementations,

FIGURE 11
BLAS execution times for each combination of model size and number of cores.
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execution time tends to decrease at first with the number of CPU
cores allocated, but then increases approximately linearly for
smaller models. However, for 1,188 DoF, the segment where
execution times decrease significantly as cores are added (up to
about 20 CPU cores) does not indicate a smooth inverse
relationship compared to its OMP counterpart in Figure 7.

Although the BLAS results display some unusual patterns
compared to the OMP implementation, the general trends
remain similar: execution time tends to decrease at first as

more cores are allocated to the problem, then increase after a
certain point. Where this increase occurs appears to be
dependent on the model size, with larger models typically
continuing to benefit from a larger number of CPU cores.
This relationship is plotted in Figure 14, which shows the
number of cores that minimizes the median execution time for
each model size.

Though the relationship between model size and the optimal
core count shows a generally positive correlation, it is not strictly

FIGURE 12
OMP vs. BLAS execution time ratios for combinations of model sizes and numbers of cores. Darker regions indicate closer performance.

FIGURE 13
BLAS execution times for individual large model sizes.
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monotone non-decreasing as it was for the OMP results
illustrated in Figure 8. For model sizes up to 528 DoF, 4-
7 CPU cores are optimal; afterward, the optimal core count
generally increases, with 62 cores being optimal for 1,188 DoF.
The significant jump from 7 to 22 cores when scaling from 528 to
858 DoF may be explained again, in part, by the underlying
processor architecture and the grouping of cores into
complexes (CCXs).

5.2.4 Applying the OpenMP latency model
While the relationships among numbers of cores, model sizes,

and execution times reflect new execution semantics for the BLAS
implementation that have not yet been fully characterized, they
nonetheless appear to follow the same general trends as for the OMP
implementation. To evaluate how well the latency model in Section
5.1.3 describes the BLAS results, the same exercise is repeated: the
quadratic relationship for median execution times on a single core is
used to quantify execution time, then the per-thread overhead w is
approximated with a linear fit.

From the quadratic relationship in Figure 4, the following
expression for Li(m, d) is obtained:

Li mi, d( ) � 9.38 · 10−7d2 − 3.66 · 10−4d + 6.90 · 10−2
mi

+ 1.75 · 10−6 ·mi (18)

where L is the latency, mi is the number of CPU cores allocated for
task execution, and d is the model size in degrees of freedom.

5.2.5 Validating the latency model for BLAS
To evaluate how well Equation 18 describes the observed

execution times for the BLAS implementation, this function (in
orange) is plotted side-by-side with the median execution times for
the models with 198, 315, 528, and 1,188 DoF. Results are shown
in Figure 15.

The latency model does not provide as close a match with the
observed data as it did for the OMP results in Figure 9, significantly
underestimating the latency for larger models. To achieve a closer fit,

FIGURE 14
Best core count by model size for BLAS.

FIGURE 15
Comparison of median BLAS execution times to latency model.
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Equation 18 is modified with an additional term that is linear in the
size of the model, but independent of core count:

Li mi, d( ) � 9.38 · 10−7d2 − 3.66 · 10−4d + 6.90 · 10−2
mi

+ 1.75 · 10−6

·mi + 2.42 · 10−4d − 4.2 · 10−2
(19)

This adjustment is illustrated in Figure 15. This phenomenon only
occurs in the BLAS implementation; as seen in Section 5.1, all overheads
related to OpenMP are dependent on the number of CPU cores used. It
is likely due to the BLAS library’s attempts at optimizing its parallel
behavior—regions which can be parallelized but may suffer
performance penalties from doing so might be run sequentially,
resulting in execution times that are dependent of the model size
but independent of the number of cores. Efforts to trace the library’s
control flow and threading behavior to verify this are ongoing.

It is also worth reexamining how well the observed optimal core
counts for each model size, plotted in Figure 14, match those
predicted by this latency model. In Figure 16; Equation 17 is
plotted against the observed values. The model now tends to
underestimate the optimal number of cores for each larger model
sizes, indicating that the latency model, despite providing a
reasonable explanation for the OMP implementation, does not
sufficiently capture the underlying architectural complexities,
sequential code, and other factors that become more relevant
under the BLAS implementation.

5.3 Discussion

This section evaluated performance of the nine-story structural
model analyzed in Ferry et al. (2014a); Ferry et al. (2014b) when
simulated on multiple cores. Results indicate that improvements
over the last decade to computational hardware and software
platforms enable timely vRTHS execution for larger models, even
on fewer processor cores.

The benefits provided by modern multicore CPUs, which
now may have over a hundred cores in a single chip socket (an
AMD EPYC 9754 with 128 cores was used for these
evaluations), enable scaling to even larger model sizes. While
the overheads associated with dispatching and synchronizing
large numbers of threads mean that fewer cores should be used
with smaller model sizes, larger models may benefit from
execution on all available processor cores. For OpenMP, a
latency model that demonstrably captures these effects was
proposed and evaluated.

The OMP implementation performs matrix operations in a
naïve manner using nested loops, with the outer loop
parallelized with OpenMP pragmas. Replacing these with
explicit calls to BLAS allowed even faster execution, with
typical speedups on the order of 1.8x, and certain cases as
large as 4.4x. However, BLAS’s execution semantics are more
complex, and the latency model for OpenMP was not as

FIGURE 16
Best core count by number of DoF predicted by latency model
for BLAS.

FIGURE 17
Standalone virtual maRTHS execution time statistics for each core count.
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accurate in predicting BLAS’s execution times. Efforts to
improve that model by quantifying the effects of vector
instructions, measuring communication and cache overheads
associated with the CPU architecture and the organization of
processor cores on the chip, identifying how BLAS allocates
data among threads, and understanding how BLAS’s threading
model interacts with the underlying OpenMP runtime,
are ongoing.

6 Initial feasibility experiments for the
multi-axial benchmark

Thus far, this paper has used the earlier nine-story structural
model analyzed by Ferry et al. (2014a); Ferry et al. (2014b) as an
experimental vehicle to highlight how advancements in
computational platforms over the last decade can be applied in
RTHS. This section considers how the improvements demonstrated
in the previous two sections may be leveraged to provide
millisecond-scale RTHS for the more complex multi-axial
benchmark problem at scale.

As described in Section 3.2, the implementations of the multi-
axial model perform standalone hybrid simulations using the
CyberMech platform. A single model size is tested, with
29 degrees of freedom (DoF), as a proof of concept to
demonstrate the problem’s difficulty and gauge its ability to
exploit the parallelism available on a multi-core processor.

6.1 Multicore execution times

The execution times of each time step in the simulation are first
measured, again testing with 1–127 cores, and for each run reporting
the median, 99.865th percentile (3σ) and maximum execution times
across all 61,440 iterations. Plots for both the OMP and BLAS
implementations are shown in Figure 17.

The results tell a similar story to those in Section 5, indicating that
the high-end AMD EPYC CPU, coupled with modern kernel,

middleware, and compiler support, is more than sufficient to
enable millisecond-scale virtual maRTHS. For the model size
tested, with only 29 degrees of freedom, each simulation time step
completes in well under 100 μs in the worst case, even on a single core.

However, the plots in Figure 17 demonstrate timing behavioral
patterns that are noteworthy, and differ slightly from those observed
in Section 5 for the nine-story structural simulation. For example, the
3σ times show highly consistent separation from the median:
29–38 μs for OMP, and 29–35 μs for BLAS. The fact that this gap
tends to be relatively constant, rather than proportional to the median
time, suggests that on some simulation iterations, additional
sequential computation is performed. Investigating possible sources
of this, including dynamicmemory reallocation, controller updates, or
kinematic transformation, is planned as future work.

Unsurprisingly, and consistent with the results from the nine-
story structural model, the BLAS implementation is more
efficient than OMP. Figure 18 plots the ratio of OMP to BLAS
execution times. On a single core, the median execution time for
BLAS is more than 3 × faster than that of OMP. Also, since the
model size is relatively small at only 29 DoF, increasing
parallelism quickly decreases the performance of the
simulation. For the OMP implementation, the best median
execution time of 14 μs is with six cores; for BLAS, the best
median time of 7.4 μs is with only four cores. The high degrees of
parallelism available from the 128-core CPU thus cannot be
exploited at that scale, though representative models with
substantially more degrees of freedom are in development, for
which it is reasonable to expect that using more cores will be
advantageous.

6.2 Discussion

The results of the scalability analysis for the standalone virtual
implementation of the maRTHS benchmark problem tell a
conclusive story. For the evaluated model, the worst-case
execution time remains under 60 μs on just four cores of the
128-core platform when accelerated using BLAS. This is only 6%
of the 977 ms response time required by a 1024 Hz simulation,
which provides plenty of room to grow; even with larger models and
constrained deadlines imposed by control loops across distributed
vRTHS and full RTHS with a physical substructure, the
computational techniques discussed in this paper are expected to
enable millisecond-scale simulations.

7 Conclusions and future work

The experimental benchmark control problem for multi-axial
real-time hybrid simulation (maRTHS), newly released to the
community by (Condori et al., 2023), proposes a more realistic,
albeit more complex, approach toward seismic testing. This paper
has considered the computational requirements towards realizing
millisecond-scale maRTHS.

Pursuant to this, it has presented evaluations of the semantically
simpler nine-story structural model analyzed by Ferry et al. (2014a,b).
The results of those evaluations demonstrate that in the decade since
that analysis, improvements inmodern computational platforms offer

FIGURE 18
Execution time ratios between OMP and BLAS implementations
of standalone virtual maRTHS.
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significant speedups, enabling sub-millisecond RTHS even for large
models with 1,188 degrees of freedom. The greatest speedups were
achieved by taking advantage of the parallelism offered by a modern
128-core AMD EPYC processor, and optimizing matrix operations
using BLAS and LAPACK.

Evaluations of a standalone virtual implementation of the
maRTHS benchmark in the CyberMech platform (Condori et al.,
2020) were also presented. On a smaller model with only 29 DoF, it
was possible to simulate each timestep in under 60 μs in the worst
case using only 4 CPU cores, suggesting the feasibility of real-time
millisecond-scale hybrid simulation for larger multi-axial models
with a physically-controlled substructure.

As an initial feasibility and scalability analysis, this paper
illuminates several directions of investigation and development
toward implementation of the next-generation MechWorks
concurrency platform. While a latency model that explains the
execution times of the purely OpenMP-based implementation of
the nine-story structural model has been proposed and analyzed
for different model sizes and on different numbers of cores, that
same latency model does not fully capture the semantics of BLAS, for
which execution time also has a term that depends on the number of
model degrees of freedom but not on the number of cores. Efforts to
develop richer execution models that explain the observed data
are ongoing.

Furthermore, the maRTHS evaluation thus far has been in a
simplified experimental environment. Toward supporting full
maRTHS with finer resolution (both in time and in models’
degrees of freedom) on MechWorks, it will be necessary to
identify and address additional limitations of the current
computational platform. Development of new operating system
and middleware thread scheduling platforms, using distributed
networked endsystems, and acceleration with heterogeneous
computing architectures such as GPUs and FPGAs, are all underway.
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