Connected-Component Labeling Using HLS for High-Energy
Particle Physics Instruments

Nick Song
Dept. of Computer
Science and Engineering
Washington University
St. Louis, Missouri, USA
ginzhounick@wustl.edu

ABSTRACT

Many instruments used in high-energy particle physics observa-
tions, e.g., gamma-ray telescopes, use FPGAs for front-end signal
processing of raw sensor data. The use of high-level synthesis (HLS)
to express the signal processing algorithms has the potential to sig-
nificantly reduce development time for new instruments of this
type. We describe our experience with one of the computational
stages in the signal processing pipeline, island detection, exploring
its implementation across multiple configurations: 1D versus 2D
islands, and 4-way versus 8-way connected-component labeling
(CCL) in the 2D configuration. We report resource usage and perfor-
mance for both configurations of 2D island detection, including the
required optimizations necessary for HLS to be effective. Results
indicate that our implementation can perform 4-way CCL on 15k
images per second even for 43 X 43 pixel arrays.

CCS CONCEPTS

« Applied computing — Astronomy; - Computer systems
organization — Sensors and actuators; - Hardware — Recon-
figurable logic applications.

KEYWORDS
high-level synthesis, particle physics, CCL

ACM Reference Format:

Nick Song, Marion Sudvarg, and Roger D. Chamberlain. 2025. Connected-
Component Labeling Using HLS for High-Energy Particle Physics Instru-
ments. In Workshops of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC Workshops °25), Novem-
ber 16-21, 2025, St Louis, MO, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3731599.3767413

1 INTRODUCTION

High-energy particle physics instruments, including gamma-ray
telescopes (Fig. 1) like VERITAS [28], CTA [10], COSI [25], APT [3],
and ADAPT [7]; neutrino detectors like IceCube [1]; and general-
purpose particle detectors like the ATLAS experiment at CERN [24]
produce large volumes of sensor data that must be processed and
analyzed with high throughput.

90¢0

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

SC Workshops °25, November 16-21, 2025, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1871-7/2025/11

https://doi.org/10.1145/3731599.3767413

Marion Sudvarg
Dept. of Physics
Washington University
St. Louis, Missouri, USA
msudvarg@wustl.edu

Roger D. Chamberlain
Dept. of Computer
Science and Engineering
Washington University
St. Louis, Missouri, USA
roger@wustl.edu

(c) CTA Observatory rendering [11].

(d) APT rendering [22].

Fig. 1: Gamma-ray telescopes.

On such instruments, field-programmable gate arrays (FPGAs)
are widely deployed to read out data from front-end electronics. Ex-
amples include the Flash ADC electronics system for VERITAS [5],
the focal plane module readout on NUSTAR [13], and the NECTAr0
high-speed digitizer ASIC [12] for CTA. Increasingly, to meet their
scientifically-crucial throughput requirements, they also employ
FPGA logic to pre-process raw sensor readout values, reducing the
volume of data transmitted, analyzed, and stored by downstream
CPU- and GPU-based computational platforms.

Across instruments, these FPGA-based data processing pipelines
share common functionality. However, diverse instruments require
unique implementations of the constituent algorithms, and the logic
is often rewritten largely from scratch for each new instrument
that is developed. Traditionally, this logic is specified in a hardware
description language (HDL) such as VHDL, Verilog, or SystemVer-
ilog. Writing, simulating, and hardware debugging of HDL-based
firmware is rarely straightforward and introduces significant over-
head to the development cycle. As instrument designs increase in
complexity and scale, this presents a tremendous challenge toward
on-time and cost-effective project completion.

High-level synthesis (HLS) presents an attractive alternative. As
an approach to expressing hardware designs at a conceptual level
higher than that of register-transfer level (RTL) descriptions [8],
HLS has proved its advantages over traditional HDL. It has a shorter
learning curve for engineers and automates a significant amount
of the workload in FPGA design and development. Sudvarg et
al. [21, 23] have successfully developed HLS implementations of sev-
eral algorithms for real-time data processing on board ADAPT [7],

https://doi.org/10.1145/3731599.3767413
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3731599.3767413

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

Fig. 2: Left: an island of signals detected in a 2D pixel array
(e.g., for CTA [6]). Right: an island of signals detected in a 1D
pixel array (e.g., for ADAPT [20]). Image from [23].

a suborbital gamma-ray and cosmic-ray telescope currently under
development. These algorithms compose a pipeline that performs
(among other stages) channel-level readout and waveform integra-
tion, then centroids over identified “islands” of consecutive nonzero
integrals in a 1D array (see Fig. 2, Right) to identify the positions
and energies of particle interactions within the detector.

The future of HLS-driven FPGA firmware design in high-energy
instruments therefore seems promising, especially as a paradigm
to improve reusability, enabling fast prototyping and deployment
on new instruments. To this end, we are interested in exploring
possibilities to leverage the current ADAPT computational pipeline
to a broader context and making it more generic and suitable for
other instruments in this domain.

In this paper, we focus on extending ADAPT’s 1D island detec-
tion to 2D pixel arrays (see Fig. 2, Left), such as those found in
the photomultiplier-based imaging sensors used by the Cherenkov
Telescope Array (CTA) [10]. Pursuant to this, we propose a generic
method that implements both 4-way and 8-way connected-component
labeling (CCL). This is integrated into the pipeline of [23], enabling
compile-time specification of 1D or 2D sensor arrangements.

Section 2 of this paper describes common features that drive
requirements across many high-energy particle detectors, focusing
on the ADAPT and CTA gamma-ray telescopes. It uses reported
limitations of the existing CTA computational platform, a CPU-
based server cluster, to motivate the use of FPGAs and an extension
of the pipeline in [23]. Section 3 provides background on CCL
and discusses related FPGA implementations. Section 4 outlines
our HLS-based CCL design. Section 5 details our development and
optimization efforts using the AMD Vitis HLS synthesis platform. It
presents reported resource usage and throughput results along the
way to highlight the impact of careful pragma and data structure
selection on performance, even when authoring HLS in a high-level
language (C++, in this case). We demonstrate that these efforts
enable throughput of 15k events per second even for pixel arrays
of size 43X43, meeting the stated goals of CTA. Finally, Section 6
concludes the paper and proposes directions for future work.

2 MOTIVATION

Our work is motivated by a class of particle physics instruments that
trigger sensor readouts when they detect high-energy interactions.
For many such instruments, fast triggering rates and extensive
sensor arrays produce large volumes of data, which must be pro-
cessed with high throughput. FPGAs, which can be programmed
with application-tailored logic that supports wide parallelism and

Song et al.

deep pipelining, are well-suited to such applications. This paper
builds upon our earlier work to develop an FPGA-based data pro-
cessing pipeline for the Antarctic Demonstrator for the Advanced
Particle-astrophysics Telescope (ADAPT) instrument [21, 23].

ADAPT serves as a balloon-borne pathfinder for the Advanced
Particle-astrophysics Telescope (APT, Fig. 1d), with an anticipated
suborbital flight from Antarctica in December 2026 [4, 7, 27]. Due
to the limited communication bandwidth typical of space-borne
missions, the majority of the data filtering and analysis must be
performed directly onboard the instrument. This drives the need
for computationally efficient, real-time data processing capabilities.
ADAPT mimics this environment, allowing our team to prototype
these capabilities on a high-altitude platform.

ADAPT’s detector has 4 interleaved layers of scintillating fiber
trackers and imaging CslI calorimeters (ICC), allowing for gamma-
ray and cosmic-ray measurements. Particle interactions in the
tracker and ICC scintillators produce photons in the visible spec-
trum, which are transported via optical fibers and detected by sil-
icon photomultipliers (SiPMs) arranged in 1D arrays. The SiPMs
are continuously sampled by analog waveform digitizer ASICs that,
when triggered, perform the analog to digital conversion (ADC).

Digital packets are read out by FPGAs which perform per-channel
preprocessing and filtering, including data acquisition, pedestal
subtraction, photon counting, and zero-suppression; as well as
cross-channel analysis and event building stages, including island
detection and centroiding to estimate the position and energy of
each interaction within the detector. An overview of the pipeline is
illustrated in Fig. 3. To ease prototyping and enable rapid revisions
in parallel with ADAPT’s design iterations during its ongoing de-
velopment, we implemented the pipeline primarily in HLS [21, 23].
Through careful pragma selection and other optimizations, it can
process 300k events per second.

Generality of Design Unlike ADAPT, which detects particles
within the instrument itself, an Imaging Atmospheric Cherenkov
Telescope (IACT) measures optical light emitted from high-energy
gamma-ray interactions in the atmosphere. Nonetheless, these are
members of a broader class of instruments that share several core
data-processing steps in common.

For instance, CTA employs a three-stage pipeline in which the
R0—DL1 phase (data calibration, image aggregation, and event
cleaning) mirrors ADAPT’s channel-level readout, pedestal sub-
traction, integration, and zero-suppression stages. While CTA’s
DL1—DL2 phase (energy, direction, and “gammaness” estimation)
shares similar goals with ADAPT’s island detection and centroid-
ing [6], it involves some materially different computational modules.
Relevant to this work, ADAPT’s 2D spatial reconstruction uses per-
pendicular 1D arrays of optical fibers, whereas CTA has true 2D
imaging capabilities using arrays of photomultiplier tubes (PMTs)
as “pixels.” Although both identify clusters (“islands”) of adjacent
“lit” pixels (those with integrated waveforms from SiPM/PMT read-
outs above a pre-defined threshold), the semantics of 1D versus 2D
island detection are fundamentally different, as illustrated in Fig. 2.

Thus, we are interested in identifying and extracting the similar
parts of the computation to create a generic pipeline so that other
instruments might benefit from the existing work. Our eventual

Connected-Component Labeling Using HLS

Packet
Handling

Parameters

Packet
Handling

Headers ped Headers oo
o Subtract ||||||||
Headers ped Headers Photon
1 Subtract IIIIIIII
H d H d

s Ped il IPhoten T Zero

Subtract IIIIIIII Counting Suppress
Headers Ped Headers Photon

Subtract ||||||||

Counting

Counting

Counting

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

2D Island o
Centroiding

Headers

m Suppress

Headers

[I]II]ID—» Suppress

1D Island + .
o Transmit
Centroiding
Headers

Zero
m Suppress

Fig. 3: ADAPT’s prototype FPGA-based data processing pipeline, illustrating our contribution. Adapted from [21, Figure 2].

aim is to explore the potential of using HLS, along with generic
programming techniques, to allow compile-time specification of
computational stages and data stream formats. We believe this will
ease adoption and enable rapid development compared to tradi-
tional HDL-based designs.

CTA The Cherenkov Telescope Array (CTA) Observatory [10],
currently under advanced development, will consist of 64 IACT
telescopes in Spain and Chile. The real-time data analysis pipeline
for the observatory’s multiple telescopes runs on a server cluster
that aims to support up to 15k events per second [6]. Each server
runs 8 threads of the R0O—DL1 phase described above; each thread
supports a 1.25 kHz event rate, for 10 kHz in total. The DL1—DL2
phase processes each event in about 1.3 ms. These reported results
suggest that CTA’s throughput target is not yet being met.
Pursuant to this, we focus our efforts on 2D island detection,
a crucial stage of CTA’s DL1—DL2 phase. We propose a generic
method that implements connected-component labeling (CCL), sup-
porting both 4-way and 8-way connected components. We imple-
ment it using HLS and integrate it into the pipeline of [21, 23],
enabling compile-time switching between 1D and 2D signal ar-
rays. The goal is to support the possibility of eventual integration
of FPGA-based implementations of portions of the R0O—DL1 and
DL1—DL2 phases into CTA’s real-time data analysis pipeline.

3 BACKGROUND AND RELATED WORK

Custom-tailored computational pipelines for image processing and
pattern recognition in high-energy physics experiments have a long
and storied history. Indeed, the ILLIAC III, built by the University
of Illinois in 1966, was designed to scan, preprocess, and perform
list-mode graph analysis of bubble chamber photographs [17].

In modern particle-physics instruments, connected-component
labeling (CCL) [15] can play a critical role in island detection,
clustering spatially correlated sensor activations that correspond
to physical events, e.g., particle interactions in a scintillator. CCL is
a fundamental image segmentation algorithm that identifies and
labels groups of connected pixels in binary images. In 4-way CCL,
pixels must be adjacent across an edge (top, right, bottom, or left)
to be grouped. In 8-way CCL, pixels are also connected across their
corners. This difference is illustrated in Fig. 4.

This work applies CCL in a real-time FPGA pipeline for:

o Identifying clusters of detections in 2D sensor arrays.
o Assigning unique labels to each spatially distinct region.
e Enabling efficient downstream tracking of interactions.

Unlabeled

8wa| CCL 4wa| CCL

Fig. 4: 4-way vs. 8-way CCL for a 6x6 pixel image. Colors and
numbers reflect the final label assigned to each component.

Several CCL strategies exist, including multi-pass, two-pass, and
single-pass algorithms. A widely adopted method is the two-pass
solution proposed by Rosenfeld and Pfaltz [19]. This approach first
assigns provisional labels while recording label equivalences, then
resolves them in a second pass to assign final labels.

CCL has been implemented in both software and hardware, with
many optimizations aimed at improving throughput and latency.
For instance, He et al. [14] proposed a fast two-pass algorithm that
achieves high performance by:

e Reducing conditional logic through a 14-case analysis for
8-way connectivity.

e Optimizing label equivalence resolution using a flat union-
find data structure with a representative label table.

¢ Minimizing memory access using case tables and hard-coded
logic, avoiding runtime branching.

Kowalczyk et al. [16] successfully implemented a hardware-
accelerated two-pass CCL on FPGAs for real-time 4K image pro-
cessing at 60 FPS. In contrast, Bailey and Johnston [2] proposed
a single-pass CCL algorithm that resolves label equivalences on-
the-fly during the first scan, eliminating the need for a second
relabeling pass. While this approach can reduce latency, it intro-
duces significant control complexity and data dependencies, which
are challenging to manage in a pipelined FPGA implementation.

Our design adopts a more balanced 1.5-pass approach: during
the first raster scan, we assign provisional labels and record equiv-
alence relationships in the merge table. After this pass, we resolve
the merge table to collapse transitive label chains and assign com-
pact, final island IDs. Rather than performing a second scan to
rewrite labels, we access the resolved merge table directly to output
final labels. This method retains the controlled memory access and
modular structure of a two-pass algorithm while avoiding redun-
dant data traversal, making it more efficient and better suited to
real-time, HLS-based FPGA synthesis.

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

Song et al.

11213

9 |44 |5 4|13

(d) Row 2 scanned.

(e) Merge table updates take minimum value.

(f) Final provisional labels.

Fig. 5: 4-way CCL algorithm example for a 10x8 image. The top row of the merge table (below each image) indicates the group
number. In our implementation, this is inferred from the 1-indexed array position. The bottom row indicates which group it
will resolve to. A value of 0 indicates the group does not yet exist, i.e., no pixels are yet labeled with that group number.

4 DESIGN

This section describes the design of our connected-component label-
ing (CCL) algorithm for 2D island detection in high-energy parti-
cle physics instruments. We note that this is a high-level overview,
with examples showing the step-by-step procedural logic, that re-
mains platform-agnostic. Details of our HLS-based implementation
and optimizations are provided in Section 5.

Our algorithm consists of three major stages:

(1) Data Acquisition and Preprocessing: Input data is re-
trieved (in our case, from the upstream Merge component
shown in Fig. 3) and structured into a 2D format.

(2) CCL: Labels are assigned using a 1.5-pass labeling approach
with a merge table to resolve equivalences.

(3) Final Label Output: The resolved labels are written to the
output stream for downstream processing.

4.1 Data Structuring

Our algorithm begins by reading pixel intensity values from up-
stream processing modules. In our implementation, which inte-
grates 2D CCL as an alternative method for island detection within
ADAPT’s prototype FPGA pipeline, these reads are from a Merge
module (see Fig. 3) that merges zero-suppressed waveform integrals
from multiple 16-channel digitizer ASICs. The output of the Merge
module is a 16-channel-wide data FIFO. Our algorithm refactors
the wide vectors into a single array (data) of channel values of
size NROWSXNCOLS; these are user-configured at compile time with
preprocessor macros. In HLS, we implement this as a 1D array,

converting a specified row/column into an address according to
rowxNCOLS+col. Once pixel values are in data, we proceed with a
raster scan.

4.2 Raster Scan and Provisional Labeling

Next, the CCL algorithm performs a row-major raster scan across
pixels. As the scan progresses, provisional group labels are assigned
to lit pixels according to the minimum of the group labels already
assigned to its neighbors. For 4-way CCL, the top and left neigh-
bors are checked (right and bottom neighbors have not yet been
processed in the scan). 8-way CCL also checks the top-left neighbor.
If no neighbors are lit, then the pixel is assigned to a new group.

Example 4.1. Consider 4-way CCL for the image shown in Fig. 5a.
After row 0 (the top row) is scanned, group labels are assigned
according to Fig. 5b. Notice that the two adjacent lit pixels are
given the same label.

Alllit neighbors of a lit pixel belong to the same group. Therefore,
if a pixel has multiple lit neighbors that have already been assigned
different group labels, this discrepancy will need to be resolved.
We use a merge table to track equivalencies. The merge table is a
simple 1-dimensional array with each entry indicating equivalency
for the group of the corresponding index (1-indexed). A value of 0
indicates that the group does not yet exist.

Example 4.2. Notice in Fig. 5¢ that the second-to-last pixel of row
1 does not have top or left neighbors lit. It is therefore provisionally
assigned to its own new group; in this case, group 5. However, it

Connected-Component Labeling Using HLS

should be assigned to group 4. Our algorithm identifies this when
the last pixel of row 1 is reached: its top neighbor is part of group 4,
but its left neighbor is labeled 5. In this case, the last pixel is assigned
the minimum value (4) and the merge table entry for group 5 is
updated to indicate equivalency with 4.

Example 4.3. When row 2 is scanned, Fig. 5d shows that the
third-to-last pixel does not have top or left neighbors lit, so it is
provisionally assigned to a new group (8). In reality, it is a member
of group 4. When the next pixel (labeled 5) is reached, as in Exam-
ple 4.2, our algorithm identifies that it belongs to the same group
as the previous pixel (labeled 8). The merge table entry for group
8 is therefore updated to point to group 5. Group 5 itself points to
group 4; transitive label chains are later resolved (Section 4.3).

We note that merge table entries are updated to equal the mini-
mum among the neighboring pixel group labels and the existing
entry value, if non-zero. This avoids overwriting earlier merge
table entries pointing to smaller labels, which would break label
equivalence resolution.

Example 4.4. In Fig. 5e we see that after a pixel is provisionally
assigned to group 10, the next pixel in the row is assigned to group
9 (since this is the minimum among its top and left neighbors).
Thus, group 10 in the merge table will be updated to point to group
9. However, group 9 in the merge table remains pointing to group
7 (the smaller value it was assigned when scanning the row above).

4.3 Resolve Merge Table

To collapse transitive group label chains, our algorithm resolves
the merge table in ascending order of label number, until a zero-
value entry (indicating no more groups) is reached. When a group
merge is detected, i.e., when an entry does not point to itself, it is
resolved by pointing all of the child groups (those detected later) to
the root group (the one initially detected). This is done by double-
dereferencing to access the root: mt[idx] is set to mt[mt[idx]].

Example 4.5. In Fig. 5f, we see that provisional group labels 4, 5,
8, 13, and 16 all belong to the same group. The merge table entries
after the raster scan are shown below the figure. Entries 4, 5, and
13 remain the same, since but mt[8] is set to mt[mt[8]] = mt[5]
= 4, and similarly for mt[16].

Resolving the merge table in ascending order naturally resolves
any chains of equivalencies since later merges automatically refer
to already-resolved entries.

4.4 Final Label Output

The final group labels for each pixel are passed downstream by
directly indexing the resolved merge table according to the provi-
sional label, and passing the group label to which it points. This
avoids writing back to the data array.

5 IMPLEMENTATION AND EXPERIMENTS

This section presents the stepwise optimization of our 2D CCL
implementation using AMD’s (previously, Xilinx) Vitis HLS for
FPGA-based island detection. We begin with a naive baseline design,
then progressively introduce storage binding, array partitioning
with loop unrolling, and loop pipelining. Each stage addresses

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

Table 1: Island Detection Results for Size 8 x 10 (4-way).

Stage Latency II | BRAM FF | LUT
Baseline 998 | 998 4 | 1076 | 2257
Bind Storage 1158 | 1158 7 | 1014 | 2303
Unrolled 1018 | 1018 5 | 1068 | 2629
Pipelined 340 340 5 | 4229 | 4096

Table 2: Island Detection Results for Size 8 x 10 (8-way).

Stage Latency II | BRAM FF | LUT
Baseline 1398 | 1398 4 | 1196 | 2746
Bind Storage 1718 | 1718 7 | 1200 | 2863
Unrolled 1578 | 1578 5 | 1254 | 3189
Pipelined 406 406 3| 7041 | 6583

specific bottlenecks observed in synthesis, building on the previous
stage’s improvements. Performance at each stage is summarized in
Tables 1 and 2 for 4-way and 8-way connectivity, respectively.

5.1 Naive Implementation

The baseline design implements the 1.5-pass CCL algorithm de-
scribed in Section 4 without tool-specific optimization pragmas.
Fig. 6 shows a more detailed implementation.

void island_detection_2d(...) {
loop through (row,col) in NROWS X NCOLS:
if pixel_vallrow][col] != o:

4 top_valid = 0 < row < NROWS && pixel_vallrow-1][col]l != o;
left_valid = @ < col < NCOLS && pixel_vall[row][col-1] != 0;
top = top_valid ? top_label : INVALID;
left = left_valid ? left_label : INVALID;
assigned = top_valid || left_valid;
curr_label = assigned ? min(top,left) :

10 mt[top] = min(mt[top],curr_label);

1 mt[left] = min(mt[left],curr_label);

new_label;

Fig. 6: CCL implementation.

As described in Section 4.3, data is received as a flattened 1D
array from the merged_integrals stream, reconstructed into an
NROWS X NCOLS matrix, and processed in row-major order. The top-
level function configures the dataflow pipeline to operate in 1D/2D
mode via a compile-time switch TWO_DIMENSION. When set, the
island_detection_2d function is compiled into the pipeline in-
stead of the original island_detection_and_centroiding, which
adds flexibility to the pipeline without touching the core design.
Connectivity is compile-time selectable between 4-way (top and
left neighbors only) and 8-way (adding top-left and top-right neigh-
bors). A single manifest constant, EIGHTWAY_NEIGHBORS, is used
with preprocessor #if statements to enable or disable the resources
needed for top-left and top-right neighbors.

Each pixel’s label is determined according to the procedure de-
scribed in Section 4.2 by:

(1) Checking visited neighbors for labels.

(2) Assigning the minimum neighbor label if any exist.

(3) Allocating a new label otherwise.

(4) Recording equivalences in the merge_table.

Observed bottlenecks:

o Merge table access used default register storage, consuming
FFs and LUTs.

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

o Inner loop initiation interval (II) matched the total loop trip-
count, as the scheduler serialized all operations.

Resource utilization and timing results for the baseline imple-
mentation of 4-way and 8-way CCL are shown in the Baseline rows
of Tables 1 and 2, respectively.

5.2 Bind Storage

To reduce the merge table’s FF/LUT utilization and to allow con-
current reads and writes across it, we bound the merge table to
dual-port BRAM using #pragma HLS bind_storage.

This mapping supports either two simultaneous reads or one
read and one write per cycle, conserving logic resources. However,
it also introduces a fixed one-cycle read latency for every merge
table access and limits total concurrent accesses to two per cycle.
In this non-pipelined design, the extra cycle per iteration increased
the overall loop latency (998 — 1158 cycles for 4-way connectivity).
This slowdown is expected, because in the baseline design, merge
table lookups in registers were effectively combinational, whereas
in BRAM they become sequential operations.

Result Discussion: Baseline — Bind Storage These results are
summarized in the Bind Storage rows of Tables 1 and 2.

e Latency/II: +16.0% (998 — 1158). Dual-port BRAM introduces a
fixed 1-cycle read latency that is not hidden without pipelining.

e BRAM: +75.0% (4 — 7) due to mapping the merge table to
RAM_2P.

e FF: —5.8% (1076 — 1014) as register-based storage is reduced.

o LUT: +2.0% (2257 — 2303).

Takeaway: Storage binding saves logic but slows the design due
to one-cycle BRAM latency. In Section 5.4, this latency becomes
fully hidden inside a pipeline, allowing the II of the inner loop to
reach 1 without exhausting FF/LUT resources.

5.3 Array Partitioning and Loop Unrolling

To exploit parallelism in the input data, we unrolled the channel-
processing loop by a factor of 16, matching the 16 input channels
per ALPHA ASIC, and applied cyclic partitioning to the data array.
This is shown in Fig. 7.

I static int32_t data[ROW%COL];
> #pragma HLS ARRAY_PARTITION variable=data
cyclic factor=num_channels dim=1

loop through a in 5 ALPHA ASICs:
integral = merged_integrals.read();
7 loop through c in 16 channels:
#pragma HLS UNROLL FACTOR=num_channels
9 data[a*NUM_CHANNELS + c] = integrallc]

Fig. 7: Array partitioning + loop unrolling.

This enabled parallel processing of 16 pixels per cycle and elimi-
nated the memory-port bottleneck caused by single-bank storage.

Note that num_channels is not a preprocessor macro, but rather
a template parameter. In Vitis HLS, preprocessor macros cannot
be passed directly to HLS pragmas. However, template parameter
can be, and a preprocessor macro can then be passed as a template
argument. This distinction is shown in Fig. 8.

Song et al.

#define NCHANNELS 16

3 //Not allowed:
#pragma HLS UNROLL FACTOR=NCHANNELS

6 //Allowed:
template <int num_channels>
s island_detection_2d(...) {
9 loop through 16 channels:
10 #pragma HLS UNROLL FACTOR=num_channels

11 3
12 island_detection_2d<num_channels=NCHANNELS>(...);

Fig. 8: Preprocessor macros in HLS pragmas.

Result Discussion: Bind Storage — Unrolled These results are
summarized in the Unrolled rows of Tables 1 and 2.

e Latency/I: —12.1% (1158 — 1018). Parallel channel handling
masks part of the BRAM delay, even without pipelining.

e BRAM: -28.6% (7 — 5) due to layout/pruning differences after
unrolling/partitioning.

e FF: +5.3% (1014 — 1068) from replicated control/data paths.

o LUT: +14.2% (2303 — 2629) for the same reason.

Takeaway: Unrolling partially recovers performance but cannot
overcome loop-carried dependencies alone.

5.4 Loop Pipelining

We applied loop pipelining to the inner column loop of the first
labeling pass to achieve II=1, as shown in Fig. 9. To remove read-
after-write hazards between the current pixel and its left neighbor,
we used a buffer (prev) to store the left neighbor’s label. Merge table
updates were decoupled from the labeling loop using hls: : stream
queues for the top and left neighbors (and diagonals in the 8-way
case), which reduced BRAM port contention.

1 loop through (row,col) in NROWS X NCOLS:
> #pragma HLS PIPELINE II=1
if data != @:

left = left_valid ? prev :

INVALID;
curr_label = assigned ? min(top,left) : new_label;
7 if lassigned: stream_top << (row, col, new_label);

if top_valid: stream_top << (row-1, col, curr_label);
9 if left_valid: stream_left << (row, col-1, curr_label);

Fig. 9: Pipelined CCL first pass.

Because the merge table was already bound to dual-port BRAM
in the previous stage, the one-cycle read latency no longer affected
total loop time: the pipelined design could issue the next iteration
before the previous BRAM access completed. This is where the
storage binding paid off: it preserved low FF/LUT usage while
achieving maximum throughput.

Unrolled — Pipelined These results are summarized in the Un-
rolled rows of Tables 1 and 2.

e Latency/II: —66.6% (1018 — 340) with II=1 for the inner loop.
Pipeline overlap hides the earlier BRAM read latency.

e BRAM: 0% (5 — 5).

o FF: +295.8% (1068 — 4229) due to buffering, stream interfaces,
and pipeline registers.

o LUT: +55.8% (2629 — 4096).

Connected-Component Labeling Using HLS

Table 3: Scalability Analysis (4-way Connectivity).

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

Table 4: Scalability Analysis (8-way Connectivity).

Array | Latency II | BRAM FF | % LUT | % Array | Latency II | BRAM FF | % LUT | %
Size Size
8x10 340 340 5 4,229 1 4,096 2 8x10 406 406 3 7,041 1 6,583 3
16X16 956 956 5 9,885 2 6,003 2 16X16 1,365 1,365 3 15,631 3 | 10,031 4
24X24 2,076 2,076 21 19,682 4 | 10,133 4 24X24 2,392 2,392 25 30,303 7 | 17,128 8
32X32 3,644 3,644 21 34,029 8 | 15,485 7 32X32 5,208 5,208 25 51,989 | 12 | 26,860 | 13
43x43 6,668 6,668 23 63,358 | 15 | 26,416 | 12 43x43 7,664 7,664 25 95,729 | 23 | 46,001 | 22
64X64 14,396 | 14,396 28 | 132,369 | 32 | 41,588 | 20 64X64 20,570 | 20,570 32 | 199,694 | 48 | 75,641 | 37
104 103
T T \
Y e 4-way N 2 N
—8— 8-way °
_ ¥ 151 :
w 1]
= =]
(<] [
g 10 : 2
g 0.5 :
<
—
\ | |
8x10 16x16 24x24 32x32 43x43 64x64
| | | | Array size

8x10 16X16 24x24 32X32

Array size

43X43 64X64

Fig. 10: Latency scaling of the fully optimized pipelined de-
sign for 4-way vs. 8-way connectivity across array sizes. All
runs meet inner-loop II=1; latency increases nearly linearly
with pixel count, with 8-way incurring additional cost from
diagonal-neighbor checks and wider merge-resolution logic.

Takeaway: Pipelining delivers the step-change in throughput;
prior storage binding now helps by keeping logic pressure manage-
able while the BRAM latency is fully hidden.

Notably, applying the same pipelining strategy to the 8-way con-
nectivity implementation yields an even larger relative speedup:
a —74.3% latency reduction (1578 — 406). This is because the ad-
ditional diagonal neighbor checks introduce more independent
operations that the pipeline can parallelize.

During this optimization, Vitis HLS reported a false memory
dependency on the stream_top FIFO in the 4-way connectivity
design. The algorithm guarantees that stream_top is written either
for a new island initialization or for a top-neighbor merge, but never
both in the same iteration. However, the compiler could not prove
this exclusivity at compile time and serialized the loop, which would
have increased the II.

To resolve this, we made the exclusivity explicit by restructuring
the update logic into an if/else if form, ensuring that only one
write to stream_top occurs per iteration (Fig. 12). This removes the
false dependency and allows the inner loop to meet II=1 without
adding another FIFO.

1 if lassigned: stream_top << (curr_idx, new_label);
» else if top valid: stream_top << (top_idx, «curr_label);

Fig. 12: False dependency removed via single-write pattern.

—o— FF (4-way) —m— FF (8-way)
—4—LUT (4-way) —— LUT (8-way)

Fig. 11: Flip-flop (FF) and LUT scaling for 4-way vs. 8-way CCL.
FF usage increases approximately linearly with pixel count,
while LUT usage grows sublinearly, reflecting control-logic
dominated growth with limited datapath replication.

5.5 Performance and Scalability Results

All designs were synthesized in Vitis HLS 2022.1 for a Xilinx Kintex-
7 XC7K325T-2FBG6761 at 100 MHz. Simulations used C and RTL co-
simulation to verify correctness on representative event data from
the ADAPT pipeline. We synthesized the fully optimized pipelined
design for a range of input sizes to evaluate scalability. The merge
table is sized to accommodate the maximum number of provisional
group labels, growing proportionally to the array dimensions:
ROW+1 COL+1

X .
2

Tables 1 and 2 summarize the results for 4-way and 8-way CCL,
respectively, on an 810 pixel array. Tables 3 and 4 illustrate scalabil-
ity, showing timing and resource utilization numbers as the image
size increases. Figs. 10 and 11 show the same results graphically,
directly comparing 4-way and 8-way CCL latency and resource
usage. We note that the array size of 43x43 roughly corresponds to
CTA’s Large Size Telescope (LST), which has 1855 pixels [18]. With
4-way CCL, we achieve CTA’s target 15 kHz event rate:

MERGETABLE_SIZE =

6668 cycle 10 ns

Latency and FF usage scale almost linearly with the total num-
ber of pixels, while BRAM usage grows in discrete steps due to
the merge table capacity and HLS FIFO buffering. LUT usage also

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

increases with input size but at a slower rate relative to FFs, as
control logic growth dominates over datapath replication. Under
ideal conditions without resource or timing constraints, through-
put scaling suggests that the pipelined 8-way design could handle
images up to 813x813 pixels at 30 fps, while the 4-way design could
process 975x975 pixels at the same frame rate.

Observations:

e Latency and II: For all image sizes, the inner-loop II=1, and
latency increases nearly linearly with the number of pixels.

o Flip-Flops: FF usage shows a strong linear correlation with
the total pixel count due to per-pixel control and state tracking
logic.

e LUTs: LUT usage grows sublinearly relative to FFs, reflecting
that most new pixels reuse existing datapath structures while
adding proportionally less control logic.

e BRAM: Stepwise increases are caused by merge table and FIFO
sizing; jumps occur when storage exceeds a BRAM block thresh-
old.

Additional 8-Way Connectivity Observations:

e Throughput/latency overhead vs. 4-way: For the same array
sizes, 8-way increases latency by +15-43%.

e Resource overhead: Adding diagonal checks increases FF us-
age by +51-67% and LUT usage by +61-82%, due to a wider
tree for determining the minimum among neighbor labels, ad-
ditional comparator logic, and more merge-update streams.

o Scaling trends: 8-way maintains inner-loop II=1 across sizes
and preserves near-linear latency scaling, but with greater FF
and LUT demand compared to 4-way.

o Timing dips: Small negative slack at certain sizes (8x10, 24x24,
and 32x32) is likely caused by FIFO implementation changes
(LUTRAM < BRAM), increased comparator width, and extra
mux/compare stages on the critical path. These effects are size-
dependent and disappear at 16x16 and 64x64.

6 CONCLUSIONS AND FUTURE WORK

We have presented a generalized FPGA-based 1.5-pass connected-
component labeling (CCL) design, implemented in High-Level Syn-
thesis (HLS), for island detection in astrophysical instruments. The
design extends the original ADAPT preprocessing pipeline with
a compile-time switch between 1D and 2D processing modes, en-
abling deployment across multiple instrument architectures with-
out redesign.

On a Kintex-7 target, the optimized 2D pipeline reduced latency
(4-way connectivity) compared to the naive baseline by 66%. The
design can process 15k events per second with array size (43x43),
similar to pixel count from the CTA Large Size Telescope. For the
more complex 8-way connectivity case, pipelining achieved an
even greater relative improvement, reducing latency by 74%. These
results demonstrate that the benefits of pipelining become more
pronounced with increasing neighborhood complexity.

Scalability tests up to 64 X 64 pixels on a single FPGA confirmed
that the design sustains inner-loop II=1 for both 4-way and 8-
way connectivity. Latency and FF usage scale almost linearly with
the total number of pixels, BRAM usage grows in discrete steps,

Song et al.

and LUT usage increases sublinearly relative to FFs. To realize
integration into CTA’s real-time analysis pipeline, we will also need
to consider system scalability concerns, e.g., communication costs.

Future work should investigate a single-pass CCL approach to
reduce latency by removing the need for a second scan. The main
challenge lies in efficiently resolving label equivalences in a single
traversal while avoiding dynamic memory dependencies. We also
intend to evaluate a two-pass implementation.

Currently, the inner loop is fully pipelined (II=1) while the outer
loop remains serialized due to unresolved dependencies between
top, top-left, and top-right neighbors. Achieving a fully pipelined
first pass could further reduce latency, but may require additional
buffering and logic replication. As future work, we intend to develop
this using both HLS and an RTL-optimized design, and compare
their performance, area, and maintainability of implementation.

Scalability tests showed nearly linear growth in latency and FF
usage with array size. Future work should focus on breaking this
scaling trend by:

e Optimizing control logic to reduce per-pixel FF overhead.

o Exploring hierarchical or tiled processing to limit merge
table and FIFO growth.

e Using compressed or dynamically allocated label storage to
reduce BRAM and FF requirements.

o Investigating selective pipelining or partial unrolling to bal-
ance performance and resource usage at larger scales.

The current design writes one pixel label per cycle to the output
FIFO, which becomes a major latency contributor at larger image
sizes. Widening the interface to output multiple labels per cycle
could reduce this overhead, with future work focusing on keeping
the enhancement generic across instruments. We believe a number
of data processing pipeline stages that are frequently employed in
high-energy particle physics instruments are amenable to the type
of generalization we have demonstrated here.

We also intend to more rigorously and formally verify the cor-
rectness of the presented algorithms to ensure that all edge cases are
handled and result in correct labels. During final testing, we identi-
fied one corner case where some transitive merge table label chains
are not resolved correctly for 4-way CCL (though the issue does
not arise in 8-way CCL). While the image patterns that cause this
do not arise in the relatively concave island shapes present in our
target application, this needs to be addressed for better generality.
Although we believe we have identified the logical fix, integrating it
into our optimized, pipelined HLS design requires additional effort.

ACKNOWLEDGMENTS

Support provided by NASA award 80NSSC21K1741, the McDon-
nell Center for the Space Sciences, the Peggy and Steve Fossett
Foundation, and a Washington University OVCR seed grant.

REFERENCES

[1] Rasha Abbasi, Yasser Abdou, T Abu-Zayyad, M Ackermann,] Adams, JA Aguilar,
M Ahlers, MM Allen, D Altmann, K Andeen, et al. 2012. The design and per-
formance of IceCube DeepCore. Astroparticle Physics 35, 10 (2012), 615-624.
https://doi.org/10.1016/j.astropartphys.2012.01.004

[2] D. G. Bailey and C. T. Johnston. 2007. Single Pass Connected Components
Analysis. In Proc. of Image and Vision Computing New Zealand. 282-287.

https://doi.org/10.1016/j.astropartphys.2012.01.004

=

Connected-Component Labeling Using HLS

[3] James Buckley et al. 2021. The Advanced Particle-astrophysics Telescope (APT)

Project Status. In Proc. of 37th Int’l Cosmic Ray Conference, Vol. 395. Sissa Medialab,
655:1-655:9. https://doi.org/10.22323/1.395.0655

James H. Buckley, Jeremy Buhler, and Roger D. Chamberlain. 2024. The Advanced
Particle-astrophysics Telescope (APT): Computation in Space. In Proc. of 21st
Int’l Conference on Computing Frontiers Workshops and Special Sessions. ACM,
122-127. https://doi.org/10.1145/3637543.3652980

James H Buckley, P Dowkontt, K Kosack, and P Rebillot. 2003. The VERITAS flash
ADC electronics system. In Proc. of 28th Int’l Cosmic Ray Conference. 2827-2830.
Sami Caroff, Pierre Aubert, Enrique Garcia, Gilles Maurin, Vincent Pollet, and
Thomas Vuillaume. 2023. The Real Time Analysis Framework of the Cherenkov
Telescope Array’s Large-Sized Telescope. In Proc. of 38th Int’l Cosmic Ray Confer-
ence, Vol. 444. Sissa Medialab, 616:1-616:9. https://doi.org/10.22323/1.444.0616
Wenlei Chen, James Buckley, et al. 2023. Simulation of the instrument perfor-
mance of the Antarctic Demonstrator for the Advanced Particle-astrophysics Tele-
scope in the presence of the MeV background. In Proc. of 38th Int’l Cosmic Ray Con-
ference, Vol. 444. Sissa Medialab, 841:1-841:9. https://doi.org/10.22323/1.444.0841
Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. 2011. High-level synthesis for FPGAs: From prototyping to de-
ployment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 30, 4 (2011), 473-491. https://doi.org/10.1109/TCAD.2011.2110592
Michael F. Corcoran. 2021. COSI: Compton Spectrometer and Im-
ager. https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/technology/
cosihtml. HEASARC “High Energy Astrophysics Picture of the Week” archive.
Last modified February 27, 2024. NASA’s Goddard Space Flight Center..

CTA Consortium, M Actis, G Agnetta, F Aharonian, A Akhperjanian, J Aleksi¢,
E Aliu, D Allan, I Allekotte, F Antico, et al. 2011. Design concepts for the
Cherenkov Telescope Array CTA: an advanced facility for ground-based high-
energy gamma-ray astronomy. Experimental Astronomy 32 (2011), 193-316.
https://doi.org/10.1007/s10686-011-9247-0

CTAO. 2018. Proposed CTA Telescopes (eso1841f). https://www.eso.org/public/
images/es01841f/. Licensed under Creative Commons Attribution 4.0 Interna-
tional (CC BY 4.0); image created by the European Southern Observatory (ESO),
credit CTAO..

E. Delagnes, J. Bolmont, P. Corona, D. Dzahini, F. Feinstein, D. Gascon, J.-F.
Glicenstein, F. Guilloux, C. L. Naumann, P. Nayman, F. Rarbi, A. Sanuy, J.P.
Tavernet, F. Toussenel, P. Vincent, and S. Vorobiov. 2011. NECTAr0, a new high
speed digitizer ASIC for the Cherenkov Telescope Array. In Nuclear Science
Symposium Conference Record. IEEE, 1457-1462. https://doi.org/10.1109/NSSMIC.
2011.6154348

Fiona A. Harrison, Steve Boggs, Finn Christensen, William Craig, Charles Hailey,
Daniel Stern, William Zhang, et al. 2010. The Nuclear Spectroscopic Telescope
Array (NuSTAR). In Space Telescopes and Instrumentation 2010: Ultraviolet to
Gamma Ray, Vol. 7732. SPIE, 189-196. https://doi.org/10.1117/12.858065
Longin He, Yuyan Chao, Kenji Suzuki, and Kesheng Wu. 2009. Fast Connected-
Component Labeling. In Proc. of the Int’l Conference on Pattern Recognition. IEEE,
1977-1980. https://doi.org/10.1016/j.patcog.2008.10.011

Lifeng He, Xiwei Ren, Qihang Gao, Xiao Zhao, Bin Yao, and Yuyan Chao. 2017. The
connected-component labeling problem: A review of state-of-the-art algorithms.
Pattern Recognition 70 (2017), 25-43. https://doi.org/10.1016/j.patcog.2017.04.018

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

[16] Marcin Kowalczyk, Pawel Ciarach, Dominika Przewlocka-Rus, and Tomasz Kry-

jak. 2021. Real-Time FPGA Implementation of Parallel Connected Component
Labelling for a 4K Video Stream. Journal of Signal Processing Systems 93 (2021),
481-498. https://doi.org/10.1007/s11265-021-01636-4

Bruce H. McCormick. 1963. The Illinois Pattern Recognition Computer-ILLIAC
III. IEEE Transactions on Electronic Computers EC-12, 6 (1963), 791-813. https:
//doi.org/10.1109/PGEC.1963.263562

C. Perennes, M. Doro, D. Corti, L. Lessio, M. Mallamaci, M. Mariotti, R. Rando,
and I. Salmaso. 2020. Optical feasibility of an upgrade of the CTA LST camera to
SiPM. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 984 (2020), 164485. https:
//doi.org/10.1016/j.nima.2020.164485

Azriel Rosenfeld and John L. Pfaltz. 1966. Sequential Operations in Digital Picture
Processing. J. ACM 13, 4 (1966), 471-494. https://doi.org/10.1145/321356.321357
Marion Sudvarg et al. 2023. Front-End Computational Modeling and Design for
the Antarctic Demonstrator for the Advanced Particle-astrophysics Telescope. In
Proc. of 38th Int’l Cosmic Ray Conference, Vol. 444. Sissa Medialab, 764:1-764:9.
https://doi.org/10.22323/1.444.0764

M. Sudvarg et al. 2025. FPGA-Based Data Processing using High-Level Synthesis
on the Antarctic Demonstrator for the Advanced Particle-astrophysics Telescope
(ADAPT). In Proc. 39th Int’l Cosmic Ray Conf., Vol. 501. Sissa Medialab, 852:1-
852:9.

Marion Sudvarg, Jeremy Buhler, Roger Chamberlain, Chris Gill, and James Buck-
ley. 2022. Work in Progress: Real-Time GRB Localization for the Advanced
Particle-astrophysics Telescope. In Proc. of 15th Wkshp. on Operating Systems
Platforms for Embedded Real-Time Applications. 57-61.

Marion Sudvarg, Chenfeng Zhao, Ye Htet, Meagan Konst, Thomas Lang, Nick

Song, Roger D. Chamberlain, Jeremy Buhler, and James H. Buckley. 2024. HLS
Taking Flight: Toward Using High-Level Synthesis Techniques in a Space-Borne

Instrument. In Proc. of 21st Int’l Conference on Computing Frontiers. ACM, 115-125.
https://doi.org/10.1145/3649153.3649209

The ATLAS Collaboration, G Aad, et al. 2008. The ATLAS Experiment at the
CERN Large Hadron Collider. Journal of Instrumentation 3, 08 (Aug. 2008), S08003.
https://doi.org/10.1088/1748-0221/3/08/S08003

J. Tomsick et al. 2023. The Compton Spectrometer and Imager. In Proc. of 38th
Int’l Cosmic Ray Conference, Vol. 444. Sissa Medialab, 745:1-745:9. https://doi.
org/10.22323/1.444.0745

VERITAS. 2009. The VERITAS array, an air Cherenkov telescope designed
to detect low-energy cosmic rays. https://commons.wikimedia.org/wiki/File:
VERITAS_array.jpg. Public domain. Image courtesy of the National Science
Foundation. Original source: https://www.nsf.gov/news/mmg/mmg_disp.jsp?
med_id=64717&from=.

Daisy Wang, Ye Htet, Marion Sudvarg, Roger Chamberlain, Jeremy Buhler, and
James Buckley. 2025. Coordinating Instruments for Multi-Messenger Astro-
physics. In Proc. of 22nd Int’l Conference on Computing Frontiers Workshops
and Special Sessions. ACM, 213-218. https://doi.org/10.1145/3706594.3727948
arXiv:whscbb25.pdf

TC Weekes et al. 2002. VERITAS: the very energetic radiation imaging telescope
array system. Astroparticle Physics 17, 2 (2002), 221-243. https://doi.org/10.1016/
50927-6505(01)00152-9

https://doi.org/10.22323/1.395.0655
https://doi.org/10.1145/3637543.3652980
https://doi.org/10.22323/1.444.0616
https://doi.org/10.22323/1.444.0841
https://doi.org/10.1109/TCAD.2011.2110592
https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/technology/cosi.html
https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/technology/cosi.html
https://doi.org/10.1007/s10686-011-9247-0
https://www.eso.org/public/images/eso1841f/
https://www.eso.org/public/images/eso1841f/
https://doi.org/10.1109/NSSMIC.2011.6154348
https://doi.org/10.1109/NSSMIC.2011.6154348
https://doi.org/10.1117/12.858065
https://doi.org/10.1016/j.patcog.2008.10.011
https://doi.org/10.1016/j.patcog.2017.04.018
https://doi.org/10.1007/s11265-021-01636-4
https://doi.org/10.1109/PGEC.1963.263562
https://doi.org/10.1109/PGEC.1963.263562
https://doi.org/10.1016/j.nima.2020.164485
https://doi.org/10.1016/j.nima.2020.164485
https://doi.org/10.1145/321356.321357
https://doi.org/10.22323/1.444.0764
https://doi.org/10.1145/3649153.3649209
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.22323/1.444.0745
https://doi.org/10.22323/1.444.0745
https://commons.wikimedia.org/wiki/File:VERITAS_array.jpg
https://commons.wikimedia.org/wiki/File:VERITAS_array.jpg
https://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=64717&from=
https://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=64717&from=
https://doi.org/10.1145/3706594.3727948
https://arxiv.org/abs/whscbb25.pdf
https://doi.org/10.1016/S0927-6505(01)00152-9
https://doi.org/10.1016/S0927-6505(01)00152-9

	Abstract
	1 Introduction
	2 Motivation
	3 Background and Related Work
	4 Design
	4.1 Data Structuring
	4.2 Raster Scan and Provisional Labeling
	4.3 Resolve Merge Table
	4.4 Final Label Output

	5 Implementation and Experiments
	5.1 Naïve Implementation
	5.2 Bind Storage
	5.3 Array Partitioning and Loop Unrolling
	5.4 Loop Pipelining
	5.5 Performance and Scalability Results

	6 Conclusions and Future Work
	Acknowledgments
	References

