PA D A P T

&% wam A Computation al Pipeline for Prompt Gamma-Ray Burst
Localization Aboard APT and ADAPT oashingon

Ye Htet (htet.ye@wustl.edu), Marion Sudvarg, Jeremy Buhler, Roger Chamberlain, James Buckley for the APT collaboration

Funded by NASA award 80NSSC21K1741 and NSF award CNS-1763503

~ Detector Noise Simulation

] [ |-|||-h| SIS ADAPT consists of 4 ICC layers with light-collecting WLS fibers
[ 0 s ishu and additionally includes edge detectors and 4 extra layers (tail
counters) w/o WLS fibers for better calorimetry.

Overview

The Advanced Particle-astrophysics Telescope (APT) [1,3] is a space-based mission concept for
a combined gamma-ray and cosmic-ray observatory aimed at providing all-sky sensitivity, a
very large effective area, and prompt localization of MeV transients such as GRBs. ADAPT (the
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Antarctic Demonstrator for APT) is under construction and scheduled to fly in late 2025. We ” O e U Aoc e | Nevens o202
are developing a low-latency computational pipeline for GRB localization fully onboard the Smart Preamplifier Noise SiPM Dark Counts
instrument. Front-end preprocessing and event building stages are deployed on a set of | |« RMS noise per ns: o = 1.39 * Rel. overvoltage ~5% S e
FPGAs. Back-end CPU-based algorithms perform multi-Compton reconstruction and ||« Further scale by signal integration time * C00ledt0 10°C
localization of the resulting Compton rings. This poster describes: - SMART single-PE impulse response * 70 kHz for. single
* An overview of the back-end algorithm for GRB localization modeled using 13ns Gaussian followed ~ 3X3 MM SIPM
* An updated model, based on simulations and lab-based instrument measurements, of the by 27ns exponential TR S S S
detector and front-end that impacts uncertainty in the measured positions and deposited | |« MC simulation determines mean and _ _ ,
. . Signal integration
energies of Compton scatters in ADAPT std for ADC count

* 10ns sampling by by analog front-end digitizer ASICs

o= * Csl scintillation modeled as 633 ns exponential distribution

* 1 usintegration for edge detector and WLS fiber signals

* |Integration window selected to trade off more optical photon
capture and less noise (dark count and preamplifier RMS)

WLS fiber transmission efficiency
\\ e The WLS fiber transmission is fit to the lab measurements
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 An updated model of the anisotropic background radiation in the upper atmosphere and
event pileup for ADAPT

 Experimental results of the localization accuracy with the updates in consideration
including a new neural network approach

* Future work in progress: zero suppression, background suppression and neural network
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Please visit poster #151, “Adaptive Real-

- : Time Computation for Prompt Localization - w B0 L as an exponential with DC offset
2 // B a Ckg roun d of Transients” Edge Detector Modeling _
How We Localize GRBs * Optical simulations of ICC layer provide distributions of g
Gamma-ray photons from a GRB enter the instrument, interacting via one scintillated photons detected by edge SiPMs : -
4 or more Compton scatters before being photoabsorbed. As described in [2], || *© Using the estimated x/y positions localized from the fibers, 3
we can convert integrated signal amplitude to energy -
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(1) Reconstruction * Power and wei hl’: ;Sde et rieans 3-to-1 ax-psossmf:/mgmulti lexing of
* Infers time ordering of one photon’s interactions w/ detector Wi T T g y WLS SiPMs intfsin o §I\/IART eam chpannel P .
* Photon reduces to Compton ring (c, ¢), where c is vector through first two interactions A B  « Solution: different ingdex of refrgction IiOn silicon epoxv at
and ¢ is inferred angle between ¢ and photon’s source direction s _ »- S s | L ' . . . POXY .
(2) Localization B3 | i 1. tileinterfaces causes optical light piping down rows of tiles.
* |ntersects 100s to 1000s of Compton rings to infer common source direction s for GRB :~ J ‘ " . szglﬁ]r;/i\e/? deurgrerjczZS;‘:;JCC:;?r;:ftthuréetztaﬁgsir\?v;eiziz of 3 fibers
1. Produce rough guess at s by testing likelihood of candidate directions from small Lt g e 2' erform centroid;gn baced on finr ositgions
random sample of Compton rings Photon absorption positions from ' , - 5 . P
2. Use iterative least-squares to refine estimate of s until convergence point-like energy deposit at center. 3+ Us€ Inferred position to look up signal-to-energy
conversion from edge detector
* Simulated bursts with Band spectra [8]; a=-0.5, E .,,= 490 keV, § =-2.35 ocalization Accura CV ( )

* Spectral energiesin [30 keV-30 MeV] to approximately match sensitivity of Fermi GBM [9]
* Burst duration of one second, with time-intensity profile of [5, Sec. 5]
* Generated gamma rays, modeled interactions with detector using GEANT4 [4]

* Tested performance at incident polar angles (0°-80°) with 45° azimuthal angles
* New application of a neural network (MLP) motivated by [10]. Enhanced initial estimates
of the errors in the inferred angle by updating the weights applied to the circles in the

Measuring GRB Localization Accuracy iterative least-squares refinement stage
* Infer source direction from GEANT4-simulated photons from model burst(s)  For a normal burst, at fluences above 1 MeV/cm?, accuracy below 5°, 68% of the time
* Measure angular diff. between true, inferred source directions « At 1 MeV/cm:, accuracy within 5-6° 68% of the time for bursts well above the horizon (<60°)
* QOver 1000 trials, report 68% (1o) and 95% (20) containment values (i.e., 68/95% of trials 20" (0.3 MeV/em2)
. . ~40° (0.3 MeV/cm
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Background Particles  ALPHA ASICs use an external global trigger

In the Earth's upper atmosphere, ADAPT will be exposed to significant anisotropic background * For a Compton event, a small number of WLS fibers capture 3

radiation from the Earth's limb. Current Solution: optical photons, but all channels are read out :

(1) Remove all events in which two or more interactions occur in the same layer » We can potentially zero-suppress by identifying single-PE

(2) Rejects all the Compton ring lies entirely below the horizontal as GRBs can occur only impulse response signal spikes in the time domain.

above the horizontal plane for ADAPT Pileup —

BaCkgrOund and Pileup 10ns Sample Number
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* Signals from multiple events may be captured within the

same ALPHA readout window. * Apply thresholding in the earlier parts of the pipeline to deal with background events
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. * Individual gamma-ray photon arrival times sampled from a Neural Network: Current model was trained only on earlier simulations without multiplexing,
ool | THEERRRC AR i | normal distributionin the interval [0,1], std=0.25s background or pileup. We plan to incorporate updated simulations and train a new model
| mllll I+ Events triggered by the anisotropic background radiation
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* An anticoincidence detector (ACD) to avoid triggering on protons, neutrons, and electrons




