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The Advanced Particle-astrophysics Telescope (APT) is a mission concept for a space-based
gamma-ray telescope whose capabilities include prompt localization of gamma-ray bursts (GRBs)
to support multi-wavelength and multi-messenger astrophysics. ADAPT — APT’s balloon-borne
prototype — can localize GRBs in well under a second using on-board computing hardware.
ADAPT will partner with ground-based, fast-slewing optical telescopes, rapidly providing alerts
that enable the partner to observe a short-duration burst within a few seconds of detection.
In this work, we investigate the utility of having ADAPT issue progressively more accurate location
estimates for a GRB as detected Compton events from the burst accumulate over time. We develop
a computational model to estimate how frequently ADAPT can compute these estimates, finding
that it can do so at least every 150 ms for a 1 MeV/cm2 burst on a low-power quad-core Intel
Atom processor. We then assess how quickly ADAPT’s localization improves as it observes
more events and show that a partner instrument can slew to a burst’s location faster if it exploits
progressive location estimates than if it waits for one final estimate. Real-time, on-board source
localization thus has a role to play in cooperative observation of gamma-ray transients even when
data collection time, rather than computing time, dominates the cost of detection.
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1. Introduction

The Advanced Particle-astrophysics Telescope (APT) is a mission concept for a space-based
observatory designed to observe high-energy gamma rays and cosmic rays in support of multi-
wavelength and multi-messenger astrophysics [1–5]. APT will promptly detect energetic transient
events in the distant universe, especially gamma-ray bursts (GRBs) in the MeV energy range,
and will rapidly communicate these events to narrow-field-of-view partner instruments for follow-
up observation at other wavelengths. APT will be deployed in a Sun-Earth Lagrange 𝐿2 orbit,
achieving nearly full-sky field of view and order-of-magnitude improvement in GRB detection
sensitivity compared with current instruments such as Fermi [2, 6, 7]. The Antarctic Demonstrator
for APT (ADAPT), a small-scale technology demonstration mission for APT’s hardware design and
computational capabilities, will launch using a high-altitude balloon in late 2026 [4, 8–11].

Prompt optical counterparts of dim, short-duration transients might be visible for only seconds,
so they must be accurately localized, and partner instruments notified to observe them, within a
short time. In prior work on ADAPT, we developed a localization pipeline [4, 10] based on
Compton reconstruction that runs aboard the telescope and is typically capable of localizing a
short 1 MeV/cm2 GRB in the sky to within 5–6 degrees in only a few hundred milliseconds after
a one-second exposure. (APT’s larger detector should deliver sub-degree localization accuracy at
similar speed). This on-board capability avoids communication bandwidth constraints and latency
associated with sending raw detector signals to earth for localization and so decreases the time to
produce an informative alert for observing partners.

Because localization runs on a shorter timescale than some GRBs, its latency is limited by
the time needed to observe enough Compton events to obtain an accurate location. The necessary
exposure time could stretch to multiple seconds for dimmer bursts. A question, then, is whether
observing partners can benefit from ADAPT’s delivering an earlier, less accurate localization –
particularly if it is followed by later, more accurate updates. For optical telescopes that slew fast
enough to promptly observe a GRB, we argue that the answer is “yes.” Early localization could
enable the partner to begin slewing toward the source immediately, while later location updates
allow it to course-correct. In the end, the partner could reach its observing target sooner than if it
had waited for the final result.

In this work, we investigate ADAPT’s ability to provide progressively more accurate local-
izations in real time during a GRB, along with this capability’s utility to observing partners. In
Section 3, we first devise a computational performance model of ADAPT’s pipeline to assess how
frequently localizations can be computed, given that the pipeline is also responsible for reconstruct-
ing a stream of individual Compton events as they arrive. We then obtain empirical estimates of
the model’s parameters to show that, on a low-power Intel quad-core processor, localization can
produce a new result at least every 150 ms. Section 4 assesses the utility of progressive localization
by modeling a partner telescope that uses early source location estimates to begin slewing as soon
as possible and corrects its path as localization improves. ADAPT’s progressive localization for a
one-second, 1MeV/cm2 burst could reduce a fast-slewing (20 deg/sec) partner instrument’s time to
target by up to 19% compared to waiting for one final result.
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2. Background

When ADAPT’s detector triggers due to a GRB in the MeV energy range, it begins to observe
gamma-ray interactions, primarily via Compton scattering. The detector’s attached ASIC and
FPGA logic [9, 12] converts each such interaction to its position r = (𝑥, 𝑦, 𝑧) and its deposited
energy 𝐸 . For a single gamma ray, the flight software gathers its list of interactions (𝑟𝑖 , 𝐸𝑖) and
communicates the list to the analysis pipeline via an in-memory event queue.

Flight
Software

Event Queue Compton Ring Queue

Reconstruction Localization

Figure 1: ADAPT GRB localization pipeline.

As shown in Figure 1, the anal-
ysis pipeline consists of two stages:
reconstruction and localization. Re-
construction converts the interaction
list for each photon to a constraint on the source’s location, in the form of a Compton ring – a circle
on the unit sphere on which the source must lie. A photon’s interactions are converted to (one,
or two possible) Compton rings by inferring their temporal ordering from energetic and kinematic
constraints via the Compton law [13]. In prior work, we developed an accelerated algorithm for
reconstruction [3, 4] that can process > 105 photons per second on ADAPT’s flight computer [14].

Reconstruction continuously accumulates Compton rings in a Compton ring queue. At any
time, the pipeline can perform localization by combining the constraints from all stored rings to
produce an estimated source direction vector s. Localization must contend both with uncertainty
in the parameters of each inferred Compton ring and with spurious rings arising from atmospheric
background radiation unrelated to the GRB; such rings can account for ≥ 50% of all rings seen by
ADAPT even during a 1 MeV/cm2 burst. As described in [4], ADAPT’s localization algorithm first
constructs a coarse estimate of the source direction from a random sample of rings in the queue, then
performs iterative least-squares refinement of this estimate using all available rings to obtain its final
result. We recently added a machine-learning component [15] to localization to help filter out rings
that are likely caused by background particles. With this addition, localization now iterates steps
of approximation, refinement, and filtering to maximize the fraction of non-background Compton
rings used to estimate the source’s location.

An estimated source location is communicated to partner instruments in an alert message. A
telescope with a narrow field of view that receives an alert must slew its detector toward the source
to observe it. While traditional optical instruments can move at most a few degrees per second,
more recent mounts [16] permit direct geodesic movement at tens of degrees per second. Although
this work focuses on simplified alerts with a single point estimate of the source, our ongoing work
on real-time production of more informative source likelihood maps [17, 18] shows that these maps
can be computed on a timescale similar to that assumed for point estimates and so could also be
used in the future to guide a fast-slewing optical telescope.

3. Performance of the GRB Localization Pipeline

To assess the feasibility of progressive localization during a GRB, we must model its added
computational cost. The same processor that performs localization must also reconstruct a con-
tinuous stream of events from ADAPT’s detector into Compton rings. Hence, time spent in extra
localization decreases the computational resources available for reconstruction. Because the goal is
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to analyze a GRB in real time, it would be undesirable to delay reconstruction indefinitely; hence,
our model should help us judge the extent to which progressive localization can be added without
undue impact on reconstruction.

Performance Modeling. In this work, the pipeline runs on ADAPT’s flight instrument computer,
a WINSYSTEMS EBC-C413 with a quad-core, 1.92 GHz Intel Atom E3845 CPU. We may utilize
its multiple CPU cores in two ways: first, by partitioning the stream of events across parallel
reconstruction threads on different cores (all of which write to the shared ring queue), and second,
by using PyTorch and OpenMP multithreading to exploit the lower-level parallelism in localiza-
tion’s machine-learning and linear-algebraic operations, respectively. Because reconstruction is
empirically much faster than localization, we assume here that a single core is responsible for
reconstruction, while all four cores participate in localization whenever it runs. Reconstruction
therefore pauses for the duration of each localization run. Future work will explore a broader set of
strategies to map analysis tasks to processor cores.

We can empirically determine the time 𝑡loc(𝑚, 𝑟) to perform localization on 𝑟 rings using 𝑚

cores. We also measure the time 𝑡recon(𝑒) to perform reconstruction on 𝑒 events using a single core.
As noted, we assume that localization prevents reconstruction from running whenever it occurs. If a
burst generates 𝐸 events, it requires time 𝑡recon(𝐸) for reconstruction; if all data should be analyzed
within time 𝑇 (e.g., the end of the burst, or a fixed deadline), that leaves time 𝑇 − 𝑡recon(𝐸) for
localization. If each run of localization processes a maximum of 𝑅 Compton rings from the ring
queue, then we have time for at least 𝑛loc =

⌊
𝑇−𝑡recon (𝐸 )
𝑡loc (𝑚,𝑅)

⌋
intermediate localizations before time 𝑇 .

Measurements. We measured the performance of reconstruction and localization on our target
platform for a 1 MeV/cm2 burst occurring over one second, normally incident to ADAPT’s detector.
The burst’s spectrum followed a Band function with parameters 𝛼 = −0.5, 𝐸peak = 490 keV,
and 𝛽 = −2.35. The GRB light curve followed a Gaussian distribution, which was added to an
atmospheric background as described in [8] that contributed a steady flux of 4.48×105 particles/sec.
We generated incident particles from the burst and background and simulated their interactions with
ADAPT’s detector using GEANT4, then applied the detector simulation described in [9] to produce
events for the analysis pipeline. We ran 300 trials with randomly generated sets of incident particles
to assess the induced variability in reconstruction and localization costs.

Figure 2a shows the cost 𝑡loc of localization with 𝑚 = 4 cores as a function of the number of
input Compton rings 𝑟 . 𝑡loc is not a simple linear function of 𝑟 in part because its approximation
sub-stage is limited to use a sample of at most 1000 Compton rings, and because the number of
iterations needed to localize a source decreases as more of its Compton rings are observed. In this
figure, the data point for 𝑟 rings includes 1 s worth of background plus as many source rings as are
needed to make up 𝑟 in total; hence, larger ring counts reflect localization’s expected latency at 1 s
for increasingly bright GRBs. (The test burst falls at 𝑟 between 500 and 600.) Overall, localization’s
average cost was under 200 ms even for more than 1500 Compton rings. In practice, this cost would
vary depending on the rate at which putative background rings can be identified and discarded,
which depends on GRB brightness as well as its angle of incidence to the detector. Figure 2b shows
how 𝑡loc varies with the number of cores. For 500–1000 rings, localization exhibited a speedup of
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Figure 2: Characterization of localization time 𝑡loc on Compton rings from a test burst as a function of
number of cores 𝑚 and number of rings 𝑟. Error bars reflect one standard deviation over 300 trials.

2.9–2.7× with four cores versus a single core, justifying the utility of using all available cores in
subsequent experiments.

Reconstruction received, over 300 trials, an average of 𝐸 = 31, 746 events from the burst
with minimal variation (1 s.d. = 154). After filtering unreconstructable, low-quality, and suspected
background events, the average yield of Compton rings was only 𝑟 = 581 (1 s.d. = 24), corresponding
to a localization time of < 100 ms with 𝑚 = 4 cores. The average time 𝑡recon(𝐸) was 134 ms,
with a maximum observed time of 140 ms over all trials. Based on these observations, we estimate
that localization for this burst can run at least 𝑛loc =

⌊ 1−0.14
0.1

⌋
= 8 times per second together with

reconstruction without exceeding the capacity of the processor or delaying event reconstructions
past one second after triggering.

4. Utility of Progressive Localization

The performance predictions of Section 3 show that running localization multiple times per
second is feasible on our computing platform. We now turn to the question of how to exploit this
capability in the context of cooperative observation between ADAPT and a fast-slewing optical
telescope. The goal is to reduce the time for the partner instrument to reach the source location
found by ADAPT, so that it can begin to capture light from any optical counterpart to the gamma-ray
transient as soon as possible.

We use the following schedule for progressive localization. We first wait 200 ms after triggering
for an initial set of events to be processed by reconstruction. Starting at 200 ms, we schedule a
localization run to start every 150 ms using all cores (as guided by our performance model), with
reconstruction running on one core between each localization run. Each run uses all available
Compton rings in the queue at the time. This process continues until the burst ends. The 200
ms time used here is somewhat ad hoc, though guided by our estimate of the Compton event rate.
Future work will systematically evaluate how ADAPT’s localization error depends on the number
of Compton rings and will use that knowledge, along with the rate at which rings accumulate, to
set lower bounds on the time to first localization and the interval between runs.

Accuracy of Progressive Localization. Figure 3 illustrates the timing and accuracy of interme-
diate localizations computed under the above schedule as ADAPT observes the test burst described

5



Performance Modeling for ADAPT Jeremy Buhler

in Section 3. As before, we ran 300 trials with randomly generated incident particles. Vertical error
bars show the variability in the angular error between ADAPT’s inferred source direction s and the
true source direction, while horizontal error bars show the variability in when the localization run
actually finishes. The “final” run occurs only after all Compton events from the burst have been
processed (new data collection ceases at 1 s, after the last intermediate localization starts). The
first localization is delivered in slightly under 400 ms and typically has a large error. However, this
error rapidly decreases with the second and third localizations as more Compton rings accumulate,
ultimately matching the final result. Variation in when each localization result is delivered is small,
indicating that inter-trial variation in Compton ring accumulation rates was limited.
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Figure 3: Accuracy of intermediate localization runs (orange)
vs. final run with all data (green). Error bars reflect one
standard deviation over 300 trials; counts on each point are
average number of rings available for that localization run.

Impact on Cooperative Pointing. We
now consider the impact on a partner
telescope of using ADAPT’s progressive
localization to locate a transient. We
assume that the partner can slew at a
constant rate of 20◦/sec in any direction,
consistent with the Planewave direct-
drive mounts used by, e.g., the 7DT
telescope system [16]. When ADAPT
generates its first source estimate s, the
partner receives it with negligible de-
lay and begins to move toward s. Each
subsequent estimate is communicated to
the partner (again with negligible delay),
which changes its movement target to
the updated source location. The partner

stops moving once it reaches the most recently received s.
We compare the time needed for the partner to reach ADAPT’s final estimated source direction

under two strategies: the progressive strategy outlined above, and a baseline in which the partner
waits to receive the final source direction before moving. The baseline requires no trajectory
corrections but delays any movement for at least the full duration of the burst.
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Figure 4: Latency advantage of progressive
over baseline strategy for bursts at polar angle
0◦, 30◦, and 60◦.

Figure 4 illustrates the difference in time-to-target
for the two strategies for the test burst. For these ex-
periments, we varied the actual source’s polar angle to
be either 0◦ (normally incident), 30◦, or 60◦; for the
latter two, the azimuthal angle was 45◦. The partner
was assumed to begin pointing at the zenith for the 30-
and 60-degree bursts, or at 60◦ for the normally incident
burst, so that substantial movement was always neces-
sary. Each experiment was again run for 300 trials with
different sets of input particles to assess the impact of
variable accuracy in ADAPT’s source estimates. In all
cases, mean time to target was roughly 4 s under the baseline strategy, while progressive localiza-
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tion reduced this time by around 0.75 s (19%). Variability in the latency reduction between trials
was due primarily to errors in earlier source directions, which were greatest for normally-incident
bursts. We note that faster slew speeds improve the observed latency reduction: if the partner instru-
ment is capable of slewing at 50◦/sec (achievable with some optical telescopes today), exploiting
progressive localization reduces the time to target by 40% vs. the baseline.
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Figure 5: Trajectory of a telescope tracking the final alert from
the two different strategies. The telescope initially points at 60◦

polar and 45◦ azimuthal and must move to a target within 5◦ of the
zenith. Points show median errors over 230 trials, while error bars
show range from min to max error.

Figure 5 illustrates for the
normally-incident case how the tele-
scope error, that is, the difference
between the partner instrument’s
current pointing direction and the
source direction given by the final
localization run, evolves over time.
Because telescope error is sensitive
to the placement of ADAPT’s final
source estimate (which impacts dis-
tance to travel), the figure reflects
only those trials (230/300) where the
final estimate lies within 5◦ of the
true source location. In the baseline
(“single alert”) strategy, the partner

does not start to move until 1.2-1.3 s after the burst triggers the detector. In contrast, exploiting
intermediate localizations begins to reduce the median telescope error (with the min and max error
bars) vs. baseline at around 500 ms after triggering, which agrees with the observed improvement
in time to target.

5. Conclusion and Future Work

The ADAPT and APT instruments will perform source localization and alert generation in real
time via onboard computation. The low latency of these computations opens up new possibilities
for how to use them in cooperative observation of high-energy transient phenomena at multiple
wavelengths. We have demonstrated that real-time, progressive GRB localization is computationally
feasible for ADAPT’s analysis pipeline and have provided evidence that using progressive estimates
computed every 150 ms can allow a fast-slewing optical telescope to reach the predicted location
of a burst more quickly.

Future work will further develop and assess the utility of progressive localization. We will
extend our computational cost model to accommodate different burst fluences and different processor
resource allocations. We will improve the scheduling of progressive localization based on more
systematic quantification of accuracy versus number of available Compton rings. We will consider
more realistic models of partner telescopes that account for communication and control delays and
settling time. Finally, we will study how to exploit progressive localization when the reported alert
data is not a single source direction but rather an entire likelihood map. Ongoing work [17, 18]
suggests that these maps can be produced using onboard computation on the same timescale as our
current point localizations.
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