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High-energy transient astrophysical phenomena, such as supernovae and binary neutron star merg-
ers, benefit from a multi-wavelength investigation in which a space- or balloon-based omnidirec-
tional telescope detects and localizes early high-energy emissions (such as a gamma-ray burst),
then alerts a narrow-field follow-up instrument to observe the source. The high-energy telescope
must provide a map that assigns to each sky location a likelihood that the source appears there.
To issue prompt alerts despite limits on communication bandwidth and latency, it is desirable to
compute this map aboard the high-energy telescope, but doing so requires rapid response while
computing under stringent size, weight, and power constraints.

This work describes a real-time likelihood mapping implementation for Compton telescopes that
is suitable for on-board computation. We use an adaptive multi-resolution approach and exploit
parallelism and data reduction opportunities to achieve sub-second construction of high-resolution
maps (HEALPix Nige=64) using a detailed instrument response matrix on a low-power (< 10 W)
embedded computing platform. We validate the speed and accuracy of our mapping approach on

simulated high-energy transients from the third COSI Data Challenge.

39th International Cosmic Ray Conference (ICRC2025)

15-24 July 2025 IC RC 2025

The Astroparticle Physics Conference

Geneva, Switzerland Geneva July 15-24, 2025

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/


mailto:jbuhler@wustl.edu
mailto:msudvarg@wustl.edu
https://pos.sissa.it/

Real-Time Likelihood Mapping Jeremy Buhler

1. Introduction

Investigations of high-energy transient astrophysical phenomena, such as binary neutron star
mergers and supernovae, can benefit from coordination between instruments with different imaging
modalities. For gamma-ray bursts (GRBs), a high-energy telescope with a wide field of view (FoV)
detects prompt emissions from a source and then communicates its location to a narrow-FoV partner
instrument, such as an optical telescope, for follow-up observation. In this cooperative setting, the
high-energy telescope must provide source localization that is both prompt and informative in order
to maximize the chance that the follow-up instrument can observe as much of the transient event’s
light curve as possible. The standard of informative localization is a likelihood map, like that shown
in Figure 1, that rates the likelihood that the source appears at each possible location in the sky.
Prompt map generation is important not only for sources that fade quickly (within 1-2 seconds)
but also for longer-lived sources; for the latter, the high-energy telescope can provide a series of
increasingly accurate maps as it accumulates observations, so that partner instruments can begin to
move toward a source right away and can refine their search strategy as the map improves.

Existing Compton telescopes, such as Fermi GBM and the
planned COSI mission, send information about detected gamma
rays to the ground, where terrestrial computation can map a tran-
sient’s location within a few seconds [1]. But this arrangement
imposes constraints that increase the time until a partner instru-
ment can respond to an observed transient. Limited bandwidth to
ground restricts the number of observations available for prompt
construction of a source’s likelihood map, no matter how bright it

is; moreover, moving data to the ground incurs latency before the
Figure 1: Detail of likelihood

map for GRB GBM140329295
at HEALPix Ng4e.=04 resolu-

tion, showing 90% containment
coordinate with space-based partner instruments, but limited band-  region. Each HEALPix pixel

map can be computed. Instruments in orbits far from earth, such as
the Advanced Particle-astrophysics Telescope (APT) [2] proposed
for deployment at the Sun-Earth L, Lagrange orbit, may need to

width and light-speed delays would add tens of seconds to the time covers ~0.84 deg”. ‘x’ denotes
needed to produce a map with terrestrial computation. These issues  true source location.
can be alleviated by computing the map aboard the high-energy telescope itself.

While rapid, detailed source likelihood mapping has been demonstrated for, e.g., LIGO [3]
using terrestrial computation, prior work has not yet demonstrated construction of such maps for
gamma-ray transients in real time under the stringent size, weight, and power constraints of on-
board computation in space. To address this gap, we have developed a real-time, low-resource
implementation of likelihood mapping for Compton telescopes. It uses a detailed instrument
response model to construct high-resolution maps (HEALPix Ng4.=64, sub-degree scale) in under
one second on an embedded processor using less than 10 W of power. Using simulated data from
the third COSI Data Challenge [4], we demonstrate that, given COSI’s current detector model,
our mapping algorithm can localize gamma-ray transients to within a few degrees using as few as
150 Compton events from the source, even in the presence of background radiation. Our results
suggest that real-time, on-board source mapping is feasible for cooperative imaging of astrophysical
transients.
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2. Problem Background

A high-energy telescope continuously observes signals from incoming particles. In the absence
of transient phenomena, these particles arise from diffuse background radiation. When a transient
occurs, the telescope observes additional gamma rays from a point source in direction § for a length
of time At. The goal is to localize the source, that is, to infer the direction 5. Because this inference
cannot be made with certainty, we instead construct a likelihood map that assigns to each possible 5 a
(log-)likelihood ratio between two hypotheses: the null hypothesis Hg that observations arise from
the background alone, and the alternative hypothesis Hy that they arise from both the background
and a source at 5. The source’s brightness and its energy spectrum, i.e., the distribution of its
photon’s energies, must be inferred as part of estimating the map.

Incoming gamma-ray photons interact with the detector by Compton scattering, producing
Compton rings that constrain the source direction. Other types of background particles can also
produce detector signals that are interpreted (incorrectly) as Compton events, giving rise to spurious
rings. A Compton ring has a center vector ¢ and an angular radius ¢ and is paired with a measurement
E,, of the incident photon’s energy. These parameters (E,,, ¢, ¢) define the Compton data space
(CDS) of possible rings. Each observation used to calculate the map is a point in the CDS together
with the time at which it is detected; let D be the set of all such observations for one transient.

Mapping Approach. Our mapping algorithm broadly follows that of the cosipy library [5],
which combines the maximume-likelihood approach of [6] to point-source localization with dis-
cretized sky-map construction in the spirit of [7]. In what follows, we assume that the burst’s energy
spectrum and the (constant) rate pp at which Compton rings arise from background radiation are
known; we will address these limitations in the next section.

The probability models for source and background Compton ring generation are respectively
an instrument response R(S, E;) and a background model B. Each model discretizes the CDS into
voxels and, for each CDS voxel, gives the fraction of observed rings from the process expected to
lie within that voxel. Discretization of source directions § and center vectors ¢ in the CDS uses the
HEALPix [8] equal-area tiling of the sphere. R and B are derived empirically from simulations that
capture biases in observed ring parameters due to the telescope’s geometry (e.g., whether shielding
blocks particles from some directions), detector electronics, and analysis software, as well as biases
inherent to the physics of Compton scattering. Given an energy spectrum for the source, we reduce
R to its spectrum-weighted average R (5) over R’s E; dimension, since a set of events sampled from
the spectrum will exhibit aggregate CDS voxel frequencies that follow R.

For the null hypothesis Hp that D arises from the background alone, we assume that rings
in voxel v of the CDS are produced by a Poisson process of intensity Ag[v] = B[v] - ppAt. For
the alternate hypothesis H; that D arises partly from a source in direction E we assume that rings
in voxel v are produced by a Poisson process of intensity A;[v] = R(5)[v] - psAf + Ag[v], where
ps is the intensity of the source. Let np[v] be the number of observed rings for voxel v, and let
Pr,,0is(1) k] be the probability that a Poisson random variable with mean A is equal to k. Then the
desired likelihood ratio is given by

L(H | D) 1—[ Prpozs(/l v])[ [V]]
L(HB | D) Prpots(/lB[v])[ [V]] .



Real-Time Likelihood Mapping Jeremy Buhler

We do not know p; a priori, so for each source direction s, we choose p, to maximize L(Hy | D).
We follow cosipy’s iterative likelihood maximization approach based on Newton’s method.

While the source direction 5 is fixed in the galactic reference frame, the telescope’s orientation
changes with time, so that the source appears to move in its frame of reference (which is also
the frame of the response R). For this reason, we use a record of the telescope’s orientation over
time (sampled once per second) to convert § to a (discretized) path = = {(51,71), (52, 72),...} in
its frame; the source appears at s; in the telescope’s frame for a duration 7;. We then replace the
response R(5) in A;[v] with R*(5) = 3, 7;R(5;). Averaging the response over the path is acceptable
if orientation undergoes little change during a transient; future work will compute and sum separate
likelihoods for events occurring in each segment of the path.

3. Real-Time Mapping Implementation

Our mapping computation seeks to construct high-resolution likelihood maps while limiting
computational cost. This cost includes (1) inferring missing parameters (background intensity, spec-
trum) needed by the likelihood model; (2) computing the spectrum-averaged instrument response
R; and, for each candidate source direction 5, (3) converting 5 to a path in the instrument frame
and (4) computing its likelihood ratio. Below, we describe our approach to (1) and optimizations
targeting (2) and (4). We implemented map construction in Python for ease of prototyping and reuse
of cosipy functions, but minimized Python interpreter overhead by implementing performance-
critical computations using Numpy and, in some cases, the Numba JIT compiler.

Throughout, we assume that the instrument response R already resides in DRAM. We used a
response published as part of the third COSI Data Challenge [4], which discretizes s and ¢ into 768
bins (HEALPix Ng4.=8), E; and E,, into 10 bins each, and ¢ into 30 bins, occupying ~6.6 GiB of
memory. For purposes of mapping, the 3-dimensional array of CDS voxels can be flattened into a
linear array of size 10 x 30 x 768.

Inference of Missing Parameters. We estimate the background intensity pp during a transient
as the average intensity in the prior 600 seconds. We reduce this interval if it overlaps a qualitative
change in event rate, such as passage through the South Atlantic Anomaly. In actual deployment,
a running estimate of pp would be maintained continually and so would not contribute to the time
needed to generate a map when a transient occurs. We estimate the source’s spectrum as a histogram
of the measured energies E,, of the events D, discretized using the same energy bins used for E; in
R. This does not correct for the background’s spectrum or for discrepancies between true E; and
measured E,,. However, we find empirically that our maps are insensitive to small spectral changes.

Size Reduction of Instrument Response. Reducing R to its spectrum average R, extracting and
summing slices of R for the path corresponding to 5, and computing the likelihood ratio for 5 all
require time proportional to the number of voxels in R’s discretized CDS. Although a moderate-
intensity transient may produce several thousand Compton events in D, the discretization used by
R in this work creates ~ 2.3 x 107 CDS voxels. Hence, for such a transient, the majority of voxels
vin R have np[v] = 0. The Poisson intensities for these “empty” voxels are not used in computing
L(H | D), except as part of the aggregate intensity Y, R(5)[v]. Hence, after computing this
aggregate once for each §, we may eliminate empty voxels entirely from the computation.
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To do so, we first compute a sparse list of voxels occupied by at least one event in D. We
then discard all entries of R and B corresponding to CDS voxels not on this list. Recall that B, as
well as each CDS-shaped subarray R(5, E;), can be expressed as a linear array of voxels. Hence,
we may convert the sparsified CDS back to a (smaller) dense array by consecutively renumbering
the surviving voxels and applying the same renumbering to the voxel numbers for each discretized
event in D. This transformation makes the problem size proportional to the number of non-empty
voxels while still using dense rather than sparse array arithmetic for the mapping computation.

Multi-resolution Map Refinement. We are interested mainly in the regions of a map most likely
to contain the source. If these regions can be identified in a low-resolution map, then further higher-
resolution mapping can be limited to them. We therefore implemented an adaptive multi-resolution
approach, similar to that of [9, 10], to reduce the cost of mapping. We first produce a map of the
detector’s entire field of view at low resolution (HEALPix Ng4.=4). We then compute the 90%
containment region [11] for the source relative to the most likely map pixel. Any pixel that is not
either in this region or immediately adjacent to it is discarded. We include adjacent pixels based
on empirical observation that, even at containments > 90%, the source’s true location was often
adjacent to the containment region rather than within it. Pixels that are not discarded are subdivided
into their four nested subpixels at the next larger HEALPix N4, and likelihoods are recomputed
only for these subpixels. We iterate this process of subdivision up to the final map resolution.

Parallel Computation. Mapping can be parallelized across multiple CPUs. At a high level,
likelihoods for individual source directions s can be computed independently. At a lower level,
linear-algebraic operations and iteration over CDS voxels can be parallelized. Our implementation
eschews high-level parallelism over § in favor of the lower level for two reasons. First, high-
level parallelism in Python requires spawning multiple processes, which both adds overhead and
complicates sharing common data such as the response R between processes. Second, our multi-
resolution approach greatly reduces the number of directions s to be computed, to the point that not
enough parallelism is available to amortize multi-process overhead.

We exploit parallelism in mapping in two ways. First, trimming the response R to just its
non-empty voxels and averaging it over the spectrum is done in parallel for each value of 5. Second,
for each 5, the log-likelihood ratio is computed in parallel over CDS voxels and then accumulated. In
particular, we parallelize the step-size computation in the Newton’s method iteration used to fit the
intensity ps. We parallelize these computations across threads using Numba’s prange construct.

4. Validation

We tested our mapping implementation on simulated transients from the third COSI Data
Challenge [4]. COSI is a low-earth orbit gamma-ray observatory to be launched in 2027. The Data
Challenge includes an instrument response matrix R discretized as described in Section 3, three
months of Compton events (real and spurious) from simulated background radiation, and a set of
simulated transients, including 11 GRBs and 6 magnetar giant flares (MGFs) with locations, light
curves, and spectra taken from published sources. We adopted the discretized CDS defined by R
and used the full three-month background simulation to estimate the model B.
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Figure 2: Running times and speedups of mapping at Ngge=64 on 16 GRB and MGF transients.

Computational Cost. We assessed the cost of mapping the 17 simulated transients. For each,
we chose a time interval that covered a large majority of its Compton events, starting with the
first second in which the event rate significantly (p < 0.1) exceeded the background rate (when a
detector might be expected to trigger) and continuing until the first second after peak intensity at
which the event rate fell below this significance threshold. We measured the time to produce a map
with Ngjge=64 resolution (~ 0.84 degz/pixel), starting from the (un-discretized) event list D.

We tested two machine configurations. The first is expected to fly on the planned ADAPT
balloon-borne gamma-ray telescope [12]; we used 4 of the performance cores on its Intel Core
i7-13700TE CPU. The second machine is a small embedded system (NVidia Jetson Orin NX) with
an 8-core ARM Cortex-A78AE CPU, which better matches the capacity of devices that could be
deployed for orbital missions. It consumes less than 10 W when fully occupied with the mapping
computation. (We did not use the Jetson’s GPU because it did not offer a speed advantage over the
ARM cores for the required linear algebraic operations.)

Figure 2 shows mapping times and multi-core speedups for 16 of the 17 transients vs. the
number of distinct CDS voxels occupied by the Compton events (including background) for each.
Mapping required under 0.3 s on the ARM and under 0.1 s on the Intel CPU in all cases, and the
cost overall scaled linearly with the number of voxels to be processed. For all these transients,
the number of occupied voxels is at most a few percent of the > 200,000 bins defined by the
response, which makes our size reduction optimization effective. The figure does not include the
bright GRB GBM090424592, which had over 100,000 Compton events occupying over 42,000
CDS bins; however, even this burst was mapped in 0.51 s on the ARM and 0.20 s on the Intel CPU,
matching the observed linear trend. Scaling of the mapping computation with more CPU cores was
limited for most transients by the small overall number of non-empty CDS voxels. For the bright
GBMO09042592, speedup reached 3.92x on the 8 cores of the ARM and 2.66x on 4 cores of the
Intel, which is likely limited by non-parallelized parts of the computation.

Our multi-resolution approach was crucial for performance. A complete Ngg.=64 map requires
calculating likelihoods for 49,152 sky pixels, which for the 17 DC3 transients averaged 2.8 s on
Intel and 12.2 s on ARM. In contrast, our implementation computed fewer than 1500 pixels for
all transients, and usually fewer than 500, while reproducing the 90% containment region of the
map. Overall, our implementation generated high-resolution maps within a fraction of a second
of receiving the input events for transients with a wide range of brightness, even on resource-
constrained hardware.
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Figure 3: Accuracy as a function of excess events over background for ten long-duration transients.

Localization Accuracy. We next evaluated how accurately our likelihood maps localized each
transient. We measured accuracy as the angular distance between the true source location and the
center of the HEALPix pixel in the map with highest log-likelihood ratio. We emphasize that this
experiment assesses how well our real-time mapping implementation performed with the given
data; we make no claim about the resolution of the COSI instrument itself.

For these tests, we assumed the transient starts at the first one-second interval with significant
excess events over background, as described above. We divided the 17 transients into two groups:
short transients, with no significant excess after at most 2 (and usually after < 1) seconds, and long
transients, which exhibited such excess at longer times (646 s) after the first significant second.

For short transients, which included all six MGFs and one GRB, our goal was to generate a
map as soon as possible after the end of the burst. We stopped collecting Compton events for a
transient after the first !/io of a second in which the excess over background was not significant at
p < 0.1. For these transients, the resulting maps had a mean accuracy of 2.28 degrees, with the
maximum error being 3.99 degrees.

For long transients, real-time mapping must balance quick response with map accuracy. Earlier,
less accurate maps can guide follow-up observations to the correct area of the sky, while later, more
accurate maps refine the area to be searched. For each long transient, we therefore computed a
new map each second after the first one during which we observed significant excess, using all
events observed up to that point, and evaluated how these maps’ accuracy improved as more events
accumulated over time. We estimated the number of excess events seen due to the transient each
second by subtracting the expected number of background events from the total event count so far.

Figure 3 shows how mapping accuracy improves as more events from the transient accumulate.
After 150 excess events, accuracy is typically within 5 degrees and may continue to improve with
additional events. Final accuracy by the end of the transient averaged 1.65 degrees for transients
with at least 150 excess events. One dim GRB, GBM 140329295, yielded only around 100 excess
events overall and was therefore only localized to within 7.65 degrees. The fraction of excess vs.
background events had little impact on accuracy, even when background events were five-fold more
frequent than events from the transient.

5. Conclusion and Future Work

Cooperation between telescopes with different imaging modalities to study high-energy tran-
sients requires rapid, accurate localization. We have demonstrated high-resolution likelihood
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mapping for gamma-ray transients in a fraction of a second, using low-power computing resources
in the range of what could be flown aboard an atmospheric or orbital mission. Our work suggests
that future missions targeting these phenomena can utilize on-board computation to reduce alert
latency, incorporate more observations into prompt analyses without the limits of communication
to the ground, and automate coordination with partner instruments.

Because our current implementation can produce a map in 100-300 ms, future work will focus
on ways to improve the accuracy of our maps while retaining sub-second latency. For the current
simulated COSI data, our spectral and background estimates do not limit accuracy, which does not
improve if these estimates are replaced with ground-truth values. More likely sources of systematic
error in our method include not accounting for earth occultation or polarization of a transient’s
gamma rays, as well as the limited resolution of DC3’s instrument response matrix. Addressing
either of these limitations requires either a larger discretized response, which would challenge an
onboard computer’s DRAM capacity, or a different, more compact representation of the response.
For example, machine learning could produce a functional model approximating a high-resolution
response in much less space. To use such a model while retaining efficiency, we would employ the
(currently unused) GPU capacity of our Jetson computing platform.

References

[1] A. Goldstein, C. Fletcher, P. Veres, M.S. Briggs, W.H. Cleveland, M.H. Gibby et al., Evaluation of automated
Fermi GBM localizations of gamma-ray bursts, The Astrophysical Journal 895 (2020) 40.

[2] J. Buckley, Adapt, S. Alnussirat, C. Altomare, R.G. Bose, D.L. Braun et al., The Advanced Particle-astrophysics
Telescope (APT) Project Status, in 37th International Cosmic Ray Conference, p. 655, Mar., 2022.

[3] L.P. Singer and L.R. Price, Rapid bayesian position reconstruction for gravitational-wave transients, Phys. Rev. D
93 (2016) 024013.

[4] Compton Spectrometer and Imager (COSI) Collaboration, COSI Data Challenges, Apr., 2025.
10.5281/zenodo.15126188.

[5] L. Martinez et al., The cosipy library: COSI’s high-level analysis software, in Proc. of 38th Int’l Cosmic Ray
Conf., vol. 444, pp. 858:1-858:8, July, 2023.

[6] A. Pollock, G. Bignami, W. Hermsen, G. Kanbach, G. Lichti, J. Masnou et al., Search for gamma-radiation from
extragalactic objects using a likelihood method, Astronomy and Astrophysics 94 (1981) 116.

[7]1 T. Herbert, Estimating the sky map in gamma-ray astronomy with a compton telescope, IEEE Transactions on
Nuclear Science 38 (1991) 563.

[8] K.M. Gorski et al., HEALPix: A framework for high-resolution discretization and fast analysis of data distributed
on the sphere, ApJ 622 (2005) 759.

[9] P.Fernique, M. Allen, T. Boch, A. Oberto, F. Pineau, D. Durand et al., Hierarchical progressive surveys:
Multi-resolution HEALPix data structures for astronomical images, catalogues, and 3-dimensional data cubes,
Astronomy & Astrophysics 578 (2015) A114.

[10] L.P. Singer and L.R. Price, Rapid Bayesian position reconstruction for gravitational-wave transients, Phys. Rev. D
93 (2016) 024013.

[11] S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Annals of
Mathematical Statistics 9 (1938) 60.

[12] W. Chen, J. Buckley et al., Simulation of the instrument performance of the Antarctic Demonstrator for the
Advanced Particle-astrophysics Telescope in the presence of the MeV background, in Proc. og 38th Int’l Cosmic
Ray Conf., vol. 444, pp. 841:1-841:9, July, 2023.


https://doi.org/10.3847/1538-4357/ab8bdb
https://doi.org/10.1103/PhysRevD.93.024013
https://doi.org/10.1103/PhysRevD.93.024013
https://doi.org/10.1109/23.289353
https://doi.org/10.1109/23.289353

Real-Time Likelihood Mapping Jeremy Buhler

Acknowledgments

We wish to acknowledge our colleagues in the APT collaboration (https://adapt.physics.wustl.edu/) and to thank
the COSI Science Team for assistance with cosipy and the DC3 data sets. This work was supported by NASA award
80NSSC21K1741.



	Introduction
	Problem Background
	Real-Time Mapping Implementation
	Validation
	Conclusion and Future Work

