Real-time Likelihood Map Generation to Localize Short-duration Gamma-ray Transients

WashU

Jeremy Buhler and Marion Sudvarg
Washington U. in St. Louis
{
jbuhler, msudvarg}@wustl.edu

Supported by NASA award 80NSSC21K1741 and a Wash U. OVCR seed grant

High-energy transient astrophysical phenomena, such as supernovae and binary neutron star mergers, benefit from a multi-wavelength investigation in which a space-or balloon-based omnidirectional telescope detects and localizes early high-energy emissions (e.g., a gamma-ray burst), then alerts a narrow-field-of-view follow-up instrument to observe the source. The high-energy telescope must provide a map that assigns to each sky location a likelihood that the source appears there. To issue prompt alerts despite limits on communication bandwidth and latency, it is desirable to compute these maps aboard the high-energy telescope, but doing so requires computing under stringent size, weight, and power constraints.

This work describes a real-time likelihood mapping implementation for Compton telescopes that is suitable for on-board computation. We use an adaptive multi-resolution approach and exploit data-reduction and parallelization opportunities to achieve sub-second construction of high-resolution maps (HEALPix $N_{\rm side}$ =64) using a detailed instrument response matrix on a low-power (< 10 W) embedded computing platform. We validate the speed and accuracy of our mapping approach on simulated gamma-ray transients from the third COSI Data Challenge [1].

The Task

- Compton telescope detects transient gamma-ray point source (e.g., GRB)
- Must localize source in the sky...
- ... and **alert** cooperating telescope with narrow FoV to point towards it.

Uncertainty in direction \vec{s} to source is expressed by likelihood map that scores each possible direction

Challenge

Provide actionable alerts to partner instrument ASAP!

Can we compute accurate likelihood map quickly (≤1s) and at high resolution (~1°)?

- To avoid latency and bandwidth limits of terrestrial computation, compute maps in real time aboard Compton telescope.
- Must operate with low-power on-board hardware.

Mapping Computation

incident photon 💥

scatterings

in detector

A Compton event

with its 3 parameters

total energy

- Given set D of Compton events (E_m, ϕ, \vec{c}) produced by mix of source photons and background radiation
- For each possible source direction \vec{s} , compute log likelihood ratio (LLR) of two hypotheses given D:
 - $H_s D$ arises from mix of source at \vec{s} and background
 - $H_B D$ arises from background only

LLR calculation requires two probabilistic models:

Instrument Response $R[\vec{s}, E_i, E_m, \phi, \vec{c}]$

defines $\Pr(E_m, \phi, \vec{c})$ for source photons from \vec{s} with energy E_i Background $\mathbf{B}[E_m, \phi, \vec{c}]$

defines $\Pr(E_m, \phi, \vec{c})$ for background particles

Our LLR calculation follows binned Poisson approach with source intensity fitting from cosipy library [3].

Strategies for High Performance

1. Problem Size Reduction

- Space of possible (E_m, ϕ, \vec{c}) is discretized into linear array of $10 \times 30 \times 768 \approx 2.3 \times 10^5$ voxels; Cost of LLR computation is proportional to number of voxels
- If no events of D fall within a voxel, it does not affect LLR

% Non-empty voxels for 16 transients from COSI Data Challenge 3

- Idea: reduce R, B to **non-empty** voxels before mapping
- > 50x problem size reduction for all but brightest transients; does not require use of sparse matrices!

2. Multi-Resolution Mapping

- Map is discretized into 49,152 pixels for \vec{s} using HEALPix [4] ($N_{\text{side}} = 64$, < 1° resolution)
- Most pixels have very low likelihood relative to max
- Compute full map at $N_{side} = 4$ (192 pixels), then refine only pixels in or near source's 90% containment region

- Iterative refinement increases resolution 4x each time
- Computes map detail near likely source, yet eliminates 97-99% of computation vs. full-resolution map

3. Parallelization

- Can parallelize LLR computation across map pixels \vec{s} and/or voxels of Compton data space
- Our implementation uses **Python**. "Natural" high-level parallelism in \vec{s} suffers from multi-process limitations
- Instead, parallelize only performance-critical loops via Numba JIT

- Some performance improvement (2-3x on 4-8 cores)
- Limited by small number of non-empty voxels for dimmer bursts, and by remaining sequential code
- Future: recode in C++ to allow high-level multithreading

For more details, please see our proceedings paper at this link

Validation

Data and Telescope Model

- Tested on 17 simulated transients from third COSI
 Data Challenge [1] published GRBs and MGFs
- Simulated observation by Compton Spectrometer and Imager (COSI) [4], incl. source + LEO background
- Discretized response R is $768 \times 10 \times 10 \times 30 \times 768$ (size in DRAM: 6.6 GiB)

Computing Platforms

- 1. Intel Core i7-13700TE used aboard current and planned balloon-borne detectors
- 2. ARM Cortex-A78AE Nvidia Jetson Orin NX (peak power < 10 W); closer to orbital capability

Running Time

- 16 low- to moderate-brightness DC3 transients mapped in < 300 ms on ARM, < 100 ms on Intel
- One bright GRB, GBM090424592, w/over 10^5 events needed 513 ms on ARM (not shown in figure)

Accuracy

- (**Disclaimer**: results reflect our analysis pipeline, **not** inherent resolution of COSI)
- Measured angular distance from maximum-likelihood map pixel to true source location
- For 7 short transients (< 2s), mean accuracy was 2.28°
- For 9 long transients, generated new map each second as events accumulated

After seeing ~150 source events, typical accuracy was within 5°; final accuracy was within 2°

Conclusion

- High-resolution source mapping is feasible in real time using low-power, on-board computing
- Facilitates rapid coordination between observers
- Key limitation: resolution of instrument response R
- More detailed response possible but will require alternate, less memory-intensive representation

References

[1] Compton Spectrometer and Imager (COSI) Collaboration, COSI Data Challenges, Apr., 2025.10.5281/zenodo.15126188.

[2] K.M. Gorski et al., HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere, *ApJ* 622 (2005) 759.

[3] I. Martinez et al., The cosipy library: COSI's high-level analysis software, in *Proc. of 38th Int'l Cosmic Ray Conf.*, vol. 444, pp. 858:1–858:8, 2023.

[4] J. Tomsick et al., The Compton Spectrometer and Imager, arXiv:2308.12362, 2023.