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Validation

High-energy transient astrophysical phenomena, such as supernovae and binary
neutron star mergers, benefit from a multi-wavelength investigation in which a space-
or balloon-based omnidirectional telescope detects and localizes early high-energy

emissions (e.g., a gamma-ray burst), then alerts a narrow-field-of-view follow-up St rategies for High Pe rfo rmance /Data and Telescope Model

instrument to observe the source. The high-energy telescope must provide a map that
assigns to each sky location a likelihood that the source appears there. To issue . . .
prompt alerts despite limits on communication bandwidth and latency, it is desirable 1 P bl S o R d t- * Tested on 17 simulated transients from third COSI
to compute these maps aboard the high-energy telescope, but doing so requires . Froowem olze heauction Data Cha[[enge [1] — pub[ished GRBs and MGFs
computing under stringent size, weight, and power constraints. . N . . ] .
* Space of possible (Eyn, ¢, €) is discretized into linear * Simulated observation by Compton Spectrometer
This work describes a real-time likelihood mapping implementation for Compton f10 30 768 ~ 2.3 105 [s: C f LLR
) , : _ , array o X X ~ 4.0 X voxels; Cost o .
telescopes that is suitable for on-board computation. We use an adaptive multi- . . . and Imager (COSI) [4], incl. source + LEO background
computation is proportional to number of voxels

resolution approach and exploit data-reduction and parallelization opportunities to
achieve sub-second construction of high-resolution maps (HEALPix N,,,=64) using a e Discretized response Ris 768 X 10 X 10 X 30 X 768

detailed instrument response matrix on a low-power (< 10 W) embedded computing e |f no events of D fall within a voxel. it does not affect LLR _ . .
platform. We validate the speed and accuracy of our mapping approach on simulatj ’ (SIZG in DRAM: 6.6 Gi B)

gamma-ray transients from the third COSI Data Challenge [1].
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* 16 low- to moderate-brightness DC3 transients mapped
IN <300 ms on ARM, <100 ms on Intel

likelihood map that scores each possible direction

*  One bright GRB, GBM090424592, w/over 10° events
needed 513 ms on ARM (not shown in figure)

Mollweide projection of
map for GBM 140329295
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* [terative refinement increases resolution 4x each time Accuracy

* Computes map detail near likely source, yet eliminates » (Disclaimer: results reflect our analysis pipeline, not
Lighter-colored pixels have higher 97-99% of computation vs. full-resolution map inherent resolution of COSI)
likelihood; true source is located at “X”
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* For 7 short transients (< 2s), mean accuracy was 2.28°

Provide actionable alerts to partner instrument ASAP! and/or voxels of Compton data space

* For9longtransients, generated new map each second

Can we compute accurate likelihood map e Ourimplementation uses Python. “Natural” high-level as events accumulated
quickly (£1s) and at high resolution (~1°)? parallelism in s suffers from multi-process limitations 0
. . . . . . . o . — 25
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» For each possible source direction s, f '\ oring * High-resolution source mapping is feasible in real
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compute log likelihood ratio (LLR) of  ©  indetector Some performance improvement (2-3x on 4-8 cores) time using low-power, on-board computing
two hypotheses given D: A Compt t . . . L
*  H.-D arises from mix of source ats with its 3 parameters * Limited by small number of non-empty voxels for * fFacilitates rapid coordination between observers
dimmer bursts, and by remaining sequential code
and background « Key limitation: resolution of instrument response R
* Hp-D arises from background only . . , ,
Future: recode in C++ to allow high-level multithreading . More detailed response possible but will require

LLR calculation requires two probabilistic models: alternate, less memory-intensive representation
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