
Limited-Preemption EDF Scheduling for Multi-Phase
Secure Tasks
Benjamin Standaert #

Washington University, St. Louis, MO, United States

Fatima Raadia #

Wayne State University, Detroit, MI, USA

Marion Sudvarg1 # Ñ

Washington University, St. Louis, MO, United States

Sanjoy Baruah #Ñ

Washington University, St. Louis, MO, United States

Thidapat Chantem # Ñ

Virginia Tech, Blacksburg, VA, USA

Nathan Fisher #Ñ

Wayne State University, Detroit, MI, USA

Christopher Gill # Ñ

Washington University, St. Louis, MO, United States

Abstract
Safety-critical embedded systems such as au-
tonomous vehicles typically have only very limited
computational capabilities on board that must be
carefully managed to provide required enhanced
functionalities. As these systems become more com-
plex and inter-connected, some parts may need
to be secured to prevent unauthorized access, or
isolated to ensure correctness.

We propose the multi-phase secure (MPS) task
model as a natural extension of the widely used spo-
radic task model for modeling both the timing and
the security (and isolation) requirements for such
systems. Under MPS, task phases reflect execu-

tion using different security mechanisms which each
have associated execution time costs for startup
and teardown. We develop corresponding limited-
preemption EDF scheduling algorithms and asso-
ciated pseudo-polynomial schedulability tests for
constrained-deadline MPS tasks. In doing so, we
provide a correction to a long-standing schedula-
bility condition for EDF under limited-preemption.
Evaluation shows that the proposed tests are ef-
ficient to compute for bounded utilizations. We
empirically demonstrate that the MPS model suc-
cessfully schedules more task sets compared to non-
preemptive approaches.

2012 ACM Subject Classification Computer systems organization → Real-time systems
Keywords and phrases real-time systems, limited-preemption scheduling, trusted execution environments
Digital Object Identifier 10.4230/LITES.10.1.3
Funding This research was supported in part by NSF Grants CPS-1932530, CNS-2141256, CNS-2229290,
IIS-1724227, CNS-2038609, CCF-2118202, CNS-2211641, and CPS-2038726.
Acknowledgements We, the authors, would like to thank the reviewers for their constructive remarks.
Received 2024-08-19 Accepted 2025-03-31 Published 2025-05-15
Editor Björn B. Brandenburg

1 Corresponding author

© Benjamin Standaert, Fatima Raadia, Marion Sudvarg, Sanjoy Baruah, Thidapat Chantem, Nathan Fisher,
and Christopher Gill;
licensed under Creative Commons License CC-BY 4.0

Leibniz Transactions on Embedded Systems, Vol. 10, Issue 1, Article No. 3, pp. 3:1–3:27
Leibniz Transactions on Embedded Systems

L I T E S Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.g.standaert@wustl.edu
https://orcid.org/0009-0008-5093-5441
mailto:fatima.fr@wayne.edu
https://orcid.org/0009-0008-2481-1293
mailto:msudvarg@wustl.edu
http://www.sudvarg.com
https://orcid.org/0000-0003-2318-7763
mailto:baruah@wustl.edu
https://engineering.washu.edu/faculty/Sanjoy-Baruah.html
https://orcid.org/0000-0002-4541-3445
mailto:tchantem@vt.edu
https://www.rtx.ece.vt.edu
https://orcid.org/0000-0002-5688-5720
mailto:fishern@wayne.edu
https://engineering.wayne.edu/profile/dx3281
https://orcid.org/0000-0002-9733-3842
mailto:cdgill@wustl.edu
https://www.cse.wustl.edu/~cdgill/
https://orcid.org/0000-0003-0366-8586
https://doi.org/10.4230/LITES.10.1.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

3:2 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

1 Introduction

In today’s interconnected world, the security of real-time systems has emerged as a primary
concern, e.g., [41, 23, 26, 20, 37, 44, 31], given the widespread integration of electronic devices into
various aspects of daily life. However, the implementation of security measures often introduces
additional resource requirements, such as increased computational overhead, or imposes specific
constraints on application behaviors; for example, this could involve necessitating computation
that requires isolation or cannot be preempted.

For example, control flow integrity (CFI) checks may be needed to ensure correct program
execution. However, such checks, which require CPU time in addition to normal code execution,
must be carried out at specific time points (e.g., after branching) and allowing for preemption
may result in an arbitrary computation being performed but not detected. As another example, a
task that is responsible for taking sensor readings may need to execute in isolation in order to
ensure that another task cannot deduce when an event of interest occurs [31].

Since implementing security measures requires some of the same resources that the real-time
tasks need to advance their execution, a co-design approach that explicitly considers security
cost/requirements along with real-time requirements is potentially more effective at managing
limited computational resources. For instance, trusted execution environments (TEEs) provide
isolation of code and data in hardware at the expense of startup and teardown costs. A scheduling
approach that does not consider this specific security-driven overhead may elect to switch between
the secure world (i.e., executing in TEE) and the normal world (no TEE) indiscriminately. This
may result in an excessive amount of overhead incurred by, e.g., hardware mode switching, saving
and restoring the stack, and copying data, resulting in deadline misses. A security-cognizant
scheduler, on the other hand, would make judicious decisions based on both security and real-time
requirements, e.g., by bundling up multiple TEE executions and executing them one immediately
after the other so as to have to pay for startup and teardown cost only once [32].

A recent ISORC paper [5] proposed and developed algorithms that are able to provide provable
correctness of both the timing and some security properties. We believe that such a scheduling-
based approach to achieving security in safety-critical systems is possible, and indeed, necessary
in embedded systems that are particularly cost- and SWaP-constrained and hence need to be
implemented in a resource-efficient manner. However, we consider it unlikely that a “one size fits
all” solution exists; instead, security-cognizant scheduling must first explicitly identify the kinds of
threats that are of concern by precisely defining a threat model, and design scheduling strategies
that can be proved to be resistant to attacks under the identified threat model. We consider
the research in [33] to be particularly noteworthy in this regard, in their explicit and methodical
modeling of different threats in the context of the sporadic task model, and their analysis of
vulnerabilities of current strategies (including security-agnostic fixed-priority scheduling [1] and
the randomization-based schedule obfuscation approaches, e.g., the one in [44]) to such threats.

Security-Cognizant Scheduling. We believe the methodology formalized and used in [33] holds
great promise as a means of integrating security and timing correctness concerns within a common
framework. This methodology was articulated in [5] as follows: security for safety-critical real-time
embedded systems can be achieved by (i) explicitly representing specific security considerations
within the same formal frameworks that are currently used for specifying real-time workloads,
thereby extending notions of correctness to incorporate both the timing and the security aspects;
and (ii) extending previously-developed techniques for achieving provable timing correctness to
these models, thus assuring that both timing and security properties are correct.

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:3

This Work. This paper extends our prior work in [3], which applied the methodology ar-
ticulated in [5] to the following problem in system design for real-time + security. We consider
computer platforms upon which multiple different security mechanisms (such as TEEs, encryp-
tion/decryption co-processors, FPGA-implemented secure computations, etc.) co-exist. Depending
upon their security requirements, different pieces/parts of the (real-time) code may need to use
different security mechanisms at different times. We therefore assume that the code is broken up
into phases, with different consecutive phases needing to use different sets of security mechanisms
– the security mechanisms used by each phase are specified for the phase. We assume that there is
a startup/teardown overhead cost (for data communication, initialization, etc.) expressed as an
execution duration, associated with switching between different security mechanisms. In other
words, there is a time overhead associated with switching between the execution of different phases.

Contributions. As in our prior work that this paper extends [3], we formalize the workload
model discussed above as the Multi-Phase Secure (MPS) task model, with multiple independent
recurrent processes of this kind that are to execute upon a single shared preemptive processor. We
start out in Section 4 assuming that each recurrent process is represented using the widely-used
3-parameter sporadic task model [7]. For this model, we represent the problem of ensuring
timeliness plus security as a schedulability analysis problem, which we then solve by adapting
results obtained in prior work (e.g., [4, 9, 13, 34, 14]) on limited-preemption scheduling. Later in
Section 5, we propose a generalization that models conditional execution within each recurrent
process. Its original treatment in [3] makes a simplifying assumption that was later addressed in
another extension; we therefore present the conditional model and the simplifying assumption in
this paper, but leave the analysis for conditional execution to the more accurate treatment in [38].

We emphasize that although the designs of these models are motivated by security considerations
– they arose out of some security-related projects that we are currently working on – we are proposing
a scheduling model and associated algorithms, not a complete solution to a particular security
problem. That is, although our model draws inspiration from security concerns, it (i) does not
claim a perfect match to all security requirements; and (ii) it should have applicability beyond the
security domain – indeed, we suggest that the results presented in this paper be looked upon as a
generalization of the rich body of real-time scheduling theory literature on limited-preemption
scheduling.

Extensions to the Prior Work. This paper extends, corrects, and clarifies our prior results
in [3], making the following new contributions. Section 3.2 presents a correction to the condition
in [4, 9] for EDF schedulability of limited-preemption tasks. Section 4 leverages the corrected
condition to introduce pseudo-polynomial schedulability analysis for sets of MPS tasks, improving
the execution time of the associated algorithms originally proposed in [3], especially for tasks with
implicit deadlines. With these improvements, we are able to evaluate larger sets of tasks with
more realistic ranges of periods. We also address inconsistencies in [3] between the theoretical
model and its implementation by using a continuous-time representation of the algorithms. These
are reflected in the new results in Section 6, which more clearly demonstrate the advantages of
our approach over non-preemptive schedulers.

Organization. The remainder of this manuscript is organized as follows. After briefly discussing
some related scheduling-theory results in Section 2, Section 3.2 presents the correction to the
limited-preemption EDF schedulability condition of [4, 9]. We then motivate and formally define
the MPS sporadic tasks model in Section 4, and provide both pre-runtime analysis and a run-time
scheduling algorithm for MPS sporadic task systems upon preemptive uniprocessor platforms. In
Section 5 we further generalize the workload model to be able to represent conditional execution.

LITES

3:4 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

We have performed schedulability experiments to evaluate both the effectiveness of our algorithms
and the performance improvements over their original implementations in [3]. We report the
results in Section 6. We conclude in Section 8 by pointing out some directions in which we
intend to extend this work, and by placing our results within a larger context on the timing- and
security-aware synthesis of safety-critical systems.

2 Some Real-Time Scheduling Background

2.1 The Sporadic Task Model [7]
In this model, recurrent processes are represented as sporadic tasks τi = (Ci, Di, Ti). Each task
has three defining characteristics: worst-case execution requirement (WCET) Ci, relative deadline
Di, and period (minimum inter-arrival duration) Ti. The sporadic task τi generates a series of jobs,
with inter-arrival times of at least Ti. Each job must be completed within a scheduling window,
which starts at the job’s release time and ends Di time units later, and the job’s execution time is
limited to Ci units. A sporadic task system Γ is made up of multiple independent sporadic tasks.
We assume without loss of generality that tasks are indexed in non-decreasing relative deadline
order (i.e., if i < j then Di ≤ Dj).

Processor Demand Analysis (PDA). A sporadic task system can be scheduled optimally by
the Earliest Deadline First (EDF) [24] scheduling algorithm, given a preemptive uniprocessor. To
determine whether a specific task system can be correctly scheduled by EDF, Processor Demand
Analysis (PDA) [8] can be utilized. PDA is a necessary and sufficient algorithm that is also
optimal. The key idea of PDA is built upon the demand bound function (dbf). Given an interval
length of L such that L ≥ 0, the dbf for a sporadic task τi can be represented by dbfi(L): the
maximum possible aggregate execution time required by jobs of task τi such that they arrive in L

and have deadlines before L. The following equation was derived in [7] to compute its value:

dbfi(L) = max
(⌊

L−Di

Ti

⌋
+ 1, 0

)
× Ci (1)

For a task system τ to be correctly scheduled by EDF, the following was derived in [7] as a
necessary and sufficient condition for all L ≥ 0:[(∑

τi∈Γ
dbfi(L)

)
≤ L

]
(2)

The Testing Set. A naïve application of PDA requires testing the validity of Equation 2 for all
intervals. However, a more efficient approach, outlined in [7], involves checking only values of L

that follow the pattern L ≡ (k × Ti + Di) for some non-negative integer k and some τi ∈ Γ.
Furthermore, it suffices to test such values that are less than the least common multiple of all

the Ti parameters. The collection of all such values of t for which it is necessary to verify that
Condition 2 holds true in order to confirm EDF-schedulability is referred to as the testing set for
the sporadic task system Γ, often denoted as T (Γ).

It is worth noting [7] that, in general, the size |T (Γ)| of the testing set T (Γ) can be exponential
in the representation of τ . However, it has been proven [8, Theorem 3.1] that for bounded-
utilization task systems – i.e., systems Γ that fulfill the additional requirement that

∑
τi∈Γ Ui ≤ c

for some fixed constant c strictly less than 1 – it is sufficient to check a smaller testing set with
pseudo-polynomial cardinality relative to the representation of Γ, consisting of all values of the
form L ≡ (k × Ti + Di) not exceeding

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:5

min
(

P, max
(

Dmax,
1

1− U
·

n∑
i=1

Ui · (Ti −Di)
))

(3)

where P is the least common multiple of all Ti, and Dmax is the maximum of all Di parameters.
We note that for bounded-utilization implicit-deadline tasks – those for which Ti = Di for every
task τi – this bound reduces to Dmax. In this extension, we apply this smaller testing set to our
scheduling algorithms for MPS tasks.

Since we can check Condition 2 in linear (Θ(n)) time for any given value of t, these observations
imply that we can perform an exponential-time EDF-schedulability test for general task systems
and a pseudo-polynomial-time one for bounded-utilization systems.

Unfortunately, the general problem is NP-hard in the strong sense [15, 16, 18], and the
bounded-utilization variant is NP-hard in the ordinary sense [17]. Therefore, it is unlikely that we
will discover more efficient schedulability tests.

2.2 Limited-Preemption Scheduling
The limited-preemption sporadic task model, as introduced by Baruah et al. [4], adds to the task
specification τi = (Ci, Di, Ti, βi) a chunk-size parameter βi in addition to the regular parameters
Ci, Di, and Ti. This parameter βi indicates that each job of task τi may need to execute
non-preemptively for up to βi time units.

To schedule tasks in the limited-preemption sporadic task model, the limited-preemption EDF
scheduling algorithm was proposed [4, 9]. Like its preemptive counterpart, the limited-preemption
EDF algorithm prioritizes jobs based on their (absolute) deadlines. If a job of task τi with
remaining execution time e is executing and a new job with an earlier deadline arrives, then τi’s
job may execute for an additional min(e, βi) time units before incurring a preemption.

Baruah and Bertogna [4, 9] showed that a task system is not schedulable under the limited-
preemption EDF model if and only if either of the following conditions are true:

∃L : L ≥ 0 :
∑
τi∈Γ

dbfi(L) > L (4)

or

∃τi : ∃L : 0 ≤ L < Di : βi +
∑

τj∈Γ,j ̸=i

dbfj(L) > L (5)

Noting that dbfi(L) = 0 when L < Di, we combine and invert the two conditions, giving a
necessary and sufficient condition for successfully scheduling a limited-preemption sporadic task
system Γ upon a single preemptive processor using the limited-preemption EDF algorithm:

∀L,

(∑

τi∈Γ
dbfi(L)

)
+

(blocking due to limited preemption)︷ ︸︸ ︷
max

{τi|Di>L}

{
βi

}
≤ L

 (6)

Unlike the exact test for preemptive uniprocessor EDF-schedulability (Equation 2), Equation 6
contains an additional term on the left-hand side of the inequality that accounts for blocking due
to later-deadline (and hence lower-priority) jobs. Specifically, the maxτi|Di>L βi term is a blocking
term that captures the potential delay caused by lower-priority jobs that were already executing
at the start of the interval, for a duration of up to their chunk size. Since we assume that all tasks
have non-negative execution time, this blocking term is always non-negative.

LITES

3:6 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

In this extension to the prior work in [3], we use a continuous-time representation of the blocking
term in Equation 6. The prior work used a discrete-time representation, maxτi|Di>L βi − 1, which
requires both task periods and execution times to be represented as integers. This introduces
several challenges. First, it is more difficult to reason about the effect of inserting preemption
points; blocking times (chunk sizes) must also be represented as integers, but the number of
“chunks” might not evenly divide the execution time. Second, there is a tradeoff when choosing
the precision at which to represent execution time units. If the unit of time is coarse, then the
execution time of each phase and its corresponding startup/teardown time must be rounded up. If
the unit of time is very short – such as a single processor tick – to achieve higher precision, then
the testing set grows rapidly as the representations of the task periods become larger. By using
continuous time, this extension removes these limitations, and modifies the expression to allow
execution times to take any non-negative real value.

Based on this observation, the Processor Demand Analysis (PDA) algorithm has been extended
to apply to limited-preemption systems as well [4]. The extension is straightforward: Equation 6
replaces Equation 2 in the algorithm, and the algorithm proceeds as usual.

However, we note that Expression 6 cannot hold true for values of L of the form

0 ≤ L < min
(

Dmin, max
{τi}
{βi}

)
(7)

where Dmin = mini{Di}, suggesting incorrectly that a set of tasks is not EDF schedulable if
any task has non-zero blocking time. In the next section of this extension, we present a corrected
condition that addresses this issue, which we then apply to scheduling of MPS tasks in Section 4.

3 The Corrected Limited-Preemption EDF Schedulability Condition

In this section, we present a correction to the condition of Baruah and Bertogna [4, 9] for EDF
schedulability of limited-preemption tasks.

3.1 The Problem
As discussed in the prior section, in [4, 9], Baruah and Bertogna claimed as a necessary and sufficient
condition for scheduling a limited-preemption sporadic task system upon a single preemptive
processor using EDF that

∀L,

(∑

τi∈Γ
dbfi(L)

)
+

(blocking due to limited preemption)︷ ︸︸ ︷
max

{τi|Di>L}

{
βi

}
≤ L

 (8)

where βi is the blocking due to limited preemption induced by task τi.
From the definition of the demand bound function dbfi(L) in Equation 1, we observe that

dbfi(L) = 0 for L < Di. Then for L < Dmin (i.e., L < Di for all tasks τi), the above condition
requires L ≥ maxτi|Di>L{βi}; as we are already considering the case that L < Dmin, this can be
simplified to L ≥ maxτi{βi}.

This implies that for values of L such that L < Dmin, the above condition cannot hold true if
L does not also exceed βi for all tasks τi. More simply, the condition cannot hold true for values
of L of the form shown in Expression 7. Because processor demand analysis requires that the
condition hold true for all values of L ≥ 0, this would deem any set of limited-preemption
tasks with non-zero blocking time to be unschedulable by EDF.

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:7

3.2 The Correction
As this is obviously not true – i.e., there are limited-preemption task sets that are schedulable by
EDF, we now set out to correct the above condition. We do so by pointing out a subtlety to the
proof in [4] of the condition in Expression 6.

That proof constructs the blocking time condition by defining a minimal unschedulable set
of jobs for which ta represents the earliest arrival time of those jobs and tf is the time at which
the first deadline miss occurs. Additionally, for each job τi, it defines qi as representing an upper
bound on the time for which τi can execute non-preemptively. In this system, there is exactly
one job with a deadline after tf ; we let τj be the task that generates this job. If t1 is the time
at which that job begins to execute non-preemptively and t2 is when it stops executing, then [4,
Equation 4] states that

n∑
i=1,i̸=j

dbf(τi, tf − t1) > tf − t2

As qj is a bound on the non-preemptive execution time, the proof in [4] then claims that
t2 − t1 ≤ qj . We observe that since t2 ≤ tf , it also follows that t2 − t1 ≤ tf − t1. We can
therefore combine these inequalities to make the statement that t2 − t1 ≤ min(qj , tf − t1). In light
of this, we modify the rest of the proof in [4]. Now, it follows that

n∑
i=1,i̸=j

dbf(τi, tf − t1) + min(qj , tf − t1) > tf − t2 + (t2 − t1)

We then replace the expression tf − t1 with a time L. Since tf < Dj , it follows that L < Dj ;
the dbf of τj will therefore be zero at L and we can rewrite the condition as:

n∑
i=1

dbf(τi, L) + min(qj , L) > L

This condition checks whether some task τj causes excessive blocking at times L < Dj ; to
determine if the system is schedulable, we can therefore test whether the following condition holds
for any task τi at any time L ≥ 0, considering blocking times from just those tasks for which
L < Di:(∑

τi∈Γ
dbfi(L)

)
+ min

(
L, max

{τi|Di>L}
{βi}

)
≤ L (9)

Then when L < Dmin, the dbf for each task is 0, so the condition will always be satisfied.
Furthermore, when L ≥ Dmin,

∑
i dbf(Li) > 0, and so the condition cannot be satisfied when

min(L, maxi βi) ≥ L. We can therefore begin the testing set of our implementation at Dmin, and
only check the blocking time when determining whether the condition is violated.

4 Systems of Multi-Phase Secure (MPS) Sporadic Tasks

In this section we extend the sporadic task model to consider the setting where the workload
of each task comprises an ordered sequence of different phases, with each phase required to use
a different security mechanism.2 Therefore, switching between phases or between jobs incurs

2 Note that we consider a unique combination of security mechanisms to be its own security mechanism. Thus,
a portion of a task subject to multiple overlapping security mechanisms would execute in its own phase.

LITES

3:8 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

some teardown/startup overhead, which translates to an additional execution duration. We
are given a system of multiple such independent tasks that are to be scheduled upon a shared
preemptive processor. If an executing task is preempted within a phase, the assumption that the
tasks in the system are independent of one another implies that we must conservatively assume
that the preempting task may be executing using a different security mechanism; hence, the
teardown/startup overhead may be incurred again. In some systems, the cost of a preemption
may be less than the full startup/teardown cost of a phase; this can be accounted for by adding
any additional cost to the execution time of the phase. When a phase of a task is selected for
execution we assign it responsibility for taking care of both the startup that must happen at that
point in time, and the subsequent teardown that occurs when it either completes execution or is
preempted by a higher-priority task. Hence a phase with execution duration c that is preempted k

times is responsible for (and hence should have been budgeted for) a total execution duration of

c + (k + 1)× (startup cost + teardown cost) (10)

A Motivating Example. To motivate the MPS task model, consider the case of trusted execution
environments (TEEs), a hardware feature that provides strong isolation of code and data. Although
this isolation has significant security benefits, broadly-used TEE implementations such as OP-
TEE [35] are sometimes limited to using only a small fraction of the available system memory [36]
and code running in a TEE has limited access to common system APIs. In addition, placing more
functionality inside a TEE increases the probability that an unidentified vulnerability compromises
the isolated TEE environment; a number of works based on TEEs have cited minimization of the
trusted computing base (TCB) as a key design concern [25, 29, 39]. A fine-grained minimization
of the code placed in a TEE can lead to the existence of tasks that span multiple “worlds” – for
example, a task may begin execution in the normal world (i.e. no TEE), switch to the secure
world (executing in the TEE) to perform a sensitive cryptographic operation, and then return to
the normal world to complete its work. In some cases, switching across worlds can also be used as
a workaround for TEE memory limitations. For example, large neural networks may be executed
securely by copying a single layer into the TEE, computing and storing an intermediate result,
and then returning to the normal world to retrieve the next layer [2].

However, switching between worlds induces TEE startup and teardown costs, the impact
of which varies depending on the choice of processor and TEE software implementation; one
implementation based on an Arm Cortex-M development board saw costs on the order of microsec-
onds [30], while an implementation using OP-TEE on a Raspberry Pi with a Cortex-A processor
saw overheads ranging from hundreds of microseconds to tens of milliseconds [32]. A scheduling
approach that does not consider these significant context-switching costs may preempt execution
for higher-priority jobs indiscriminately, resulting in missed deadlines due to the overheads incurred
by frequent startup/teardown.

4.1 Task Model
We have a task system Γ comprising N independent recurrent tasks τ1, τ2, . . . , τN , to be scheduled
upon a single preemptive processor. The task τi is characterized by a period/inter-arrival separation
parameter Ti and a relative deadline Di ≤ Ti . The body of the task – the work that must be
executed each time the task is invoked – comprises ni phases, denoted vi,1, vi,2, . . . , vi,ni

, that
must execute in sequence upon each job release of the task:

vi,1 vi,2 vi,3 vi,ni

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:9

As previously discussed, we assume that successive phases are required to execute using different
security mechanisms (i.e., vi,j and vi,j+1 execute using different security mechanisms for all j,
1 ≤ j < ni). Let c(vi,j) denote the WCET of phase vi,j , and q(vi,j) denote the sum of the startup
cost and the teardown cost associated with the security mechanism within which phase vi,j is to
execute. The aggregate WCET of all phases of this task during its execution is thus given by the
following expression

ni∑
j=1

(
c(vi,j) + q(vi,j)

)
However, suppose that during some execution of task τi the j’th phase is preempted kj times for
each j, 1 ≤ j ≤ ni; as discussed above (Equation 10), the cumulative WCET of all phases of this
task during this execution is then given by the expression

ni∑
j=1

(
c(vi,j) + (kj + 1)× q(vi,j)

)
The figure below depicts a 2-phase job, denoted by vi,1 and vi,2, which is preempted once in the
first phase and twice in the second phase. The shaded region denotes the startup and teardown
costs for each phase of the job.

vi,1 vi,2

x x x

vi,1a vi,1b vi,2a vi,2b vi,2c

4.2 Overview of Approach
Given a task system Γ comprising multiple independent MPS tasks to be scheduled upon a
single preemptive processor, we will first execute a schedulability analysis algorithm to determine
whether this system is schedulable, i.e., whether we can guarantee to schedule it to always meet all
deadlines, despite the costs incurred by startup/teardown. This schedulability analysis algorithm
essentially constructs a limited-preemption task τ̂i corresponding to each task τi, and determines
whether the resulting limited-preemption task system can be scheduled by the limited-preemption
EDF scheduling algorithm [4, 9] to always meet all deadlines. If so, then during run-time the
original task system is scheduled using the limited-preemption EDF scheduling algorithm, with
chunk-sizes as determined for the corresponding constructed limited-preemption tasks. We point
out that if a chunk-size βi is determined for the limited-preemption task τ̂i, then the j’th phase
of τi’s jobs will execute in no more than ⌈c(vi,j)/(βi − q(vi,j))⌉ contiguous time-intervals (i.e., it
would experience at most (⌈c(vi,j)/(βi − q(vi,j))⌉ − 1) preemptions); equivalently, the cumulative
WCET of all the phases of each of task τi’s jobs will be no more than

ni∑
j=1

(
c(vi,j) +

⌈
c(vi,j)

βi − q(vi,j)

⌉
× q(vi,j)

)

Assumption of Fixed-Preemption Points. We make the conservative assumption that once
the chunk-size is determined for each task then the preemption points in the code are statically
determined prior to run-time. That is, once the chunk-size βi is determined for a task τi, a

LITES

3:10 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

preemption is statically inserted into the task’s code after the code has executed non-preemptively
for no more than βi time units; this is referred to as the fixed-preemption point model [42]. Once
τi’s program reaches this statically-placed preemption point, the security mechanism for the task’s
current phase must
1. complete a teardown (e.g., a flush of the cache, or ending a TEE session) to ensure task

execution integrity during preemption;
2. invoke the operating system’s scheduler to see if there are any high-priority tasks awaiting

execution; and
3. upon resuming execution as the highest-priority task the security mechanism must perform a

startup (e.g., starting a new TEE session from the task’s last executed instruction).

Since the preemption points are statically inserted into the code, we must perform the
teardown/startup for a phase each time a preemption point is encountered (even if there is no
other task active in the system at that time). While clearly this approach suffers from potentially
performing unnecessary preemptions, it is often used in safety-critical settings due the precise
predictability that fixed-preemption points provide. In future work, we will explore the floating
preemption point model and other models that would permit the system to avoid unnecessary
preemptions and teardowns/startups.

4.3 The Schedulability Test
We now describe our schedulability test. As discussed above, our approach is to construct for
each task τi a corresponding limited-preemption task τ̂i. This limited-preemption task is assigned
the same relative deadline parameter value (i.e., Di) and the same period parameter value (i.e.,
Ti) as τi; its WCET Ĉi and its chunk-size parameter βi are computed as described below, and in
pseudo-code form in Algorithm 1.

We introduce integer variables cnt(vi,j) for each i, 1 ≤ i ≤ n, and for each j, 1 ≤ j ≤ ni, to
denote the maximum number of contiguous time-intervals in which the j’th phase of τi may need
to execute. Then Ĉi, the WCET of each job of task τ̂i, can be written as

Ĉi
def=

ni∑
j=1

(
c(vi,j) + cnt(vi,j)× q(vi,j)

)
(11)

where the second term within the summation represents the maximum preemption overhead (the
startup cost plus the teardown cost) that is incurred by the j’th phase of task τi.

It remains to specify the values we will assign to the cnt(vi,j) variables. We will start out
assuming that each phase of each task τi executes non-preemptively – i.e., in one contiguous time-
interval. We do this by initially assigning each cnt(vi,j) the value 1; we will describe below how
the cnt(vi,j) values are updated if enforcing such non-preemptive execution may cause deadlines
to be missed. With each cnt(vi,j) assigned the value 1, it is evident that the largest duration for
which task τi will execute non-preemptively is equal to maxni

j=1 {c(vi,j) + q(vi,j)}; we initialize the
chunk-size parameters – the βi values – accordingly: for each task τi,

βi ←
nimax

j=1
{c(vi,j) + q(vi,j)} (12)

In this manner, we have instantiated the parameters for one limited-preemption task τ̂i corre-
sponding to each task τ ∈ Γ. We must now check whether the limited-preemption task system
Γ̂ = {τ̂1, τ̂2, . . . , τ̂N} so obtained is schedulable using the limited-preemption EDF scheduling
algorithm [4, 9]. We do so by checking whether Equation 9 holds for values of t in the testing
set T (Γ̂), considered in increasing order ; we motivate this ordering below in (5). First, we split

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:11

Algorithm 1 The Preprocessing Algorithm for Systems of MPS Sporadic Tasks (see Section 4).

Input:
(
Γ
)

1 for each task τi ∈ Γ do //Initially, assume that no preemption is needed
2 for j ← 1 to ni do
3 cnt(vi,j)← 1
4 βi ← max1≤j≤ni

(c(vi,j) + q(vi,j))

5 //The testing set T (Γ)1 is all t ≡ Di + k · Ti, t ≤ Dmax for some task τi and some k ∈ N.
6 for td iterating in increasing order over T (Γ)1 do
7 Compute ∆(td) as per Eqn 13 //This represents the slack in the schedule at td

8 if ∆(td) < 0 then //Check whether previously-assigned chunk sizes causes deadline miss
9 return the system is not schedulable

10 for each τi for which Di > td do
11 if (βi > ∆(td)) then //Must reduce the value of βi

12 βi ← ∆(td)
13 for j ← 1 to ni do //For each phase of τi, ensure that it doesn’t block too

much
14 if βi > q(vi,j) then //There is sufficient time in chunk to do task execution
15 cnt(vi,j)← minκ∈N such that c(vi,j)

κ + q(vi,j) ≤ βi //Break c(vij) into small
enough pieces

16 else
17 return the system is not schedulable

18 if system utilization > 1 then
19 return the system is not schedulable

20 if all tasks have implicit deadlines Di = Ti then
21 return the system is schedulable

22 //For systems of constrained-deadline tasks, the testing set T (Γ)2 is all t ≡ Di + k · Ti,
Dmax < t and not exceeding the bound defined in Expression 3 for some task τi and some
k ∈ N.

23 for td iterating in increasing order over the testing set T (Γ)2 do
24 Compute ∆(td) as per Eqn 13
25 if ∆(td) < 0 then
26 return the system is not schedulable

27 return the system is schedulable

T (Γ̂) into two sets, T (Γ̂)1 containing all values up to and including Dmax ≡ maxτi
Di, and T (Γ̂)2

containing all values thereafter. Then, we initialize td to denote the smallest value in T (Γ̂)1, and
perform the following steps.

1. If Equation 9 is satisfied for td, we set td to be the next-smallest value in T (Γ̂)1, and repeat
this step.

2. If Equation 9 is violated for td and the first term in the LHS of Equation 9 is > td, then we
conclude that the system is not schedulable and return.

Suppose, however, that a violation of Equation 9 occurs due to the blocking term in Equation 9.
That is, the first term in the LHS of Equation 9 is ≤ td when Equation 9 is instantiated with
t← td, but the sum of the first and second terms exceeds td. For this to happen, it must be
the case that some τ̂i with Di > td is blocking ‘too much;’ we must reduce the amount of
blocking each such task can cause (i.e., reduce its βi parameter). Below, we describe how to
do so.

LITES

3:12 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

3. Let ∆(td) denote the amount of blocking that can be tolerated at td without causing a deadline
miss:

∆(td) def= td −
∑

τ̂k∈Γ̂

dbf(τ̂k, td) (13)

As discussed above, each τ̂i with Di > td must ensure that its blocking term, βi, is no greater
than ∆(td). For each such task with βi currently greater than ∆(td), we may need to increase
cnt(vi,j), the number of contiguous time-intervals in which its j’th phase may execute for each
of its phases vi,1, vi,2, . . . , vi,ni

, in the following manner:

cnt(vi,j)← min
κ∈N

such that
c(vi,j)

κ
+ q(vi,j) ≤ ∆(td) (14)

That is, we reduce blocking in order to satisfy Equation 9 for td by potentially increasing the
number of preemptions (and thereby incurring additional teardown/startup overhead). In
prior work [3], we assumed that tasks had integer execution times and hence used βi − 1 as
the blocking term; here, we use continuous time and therefore do not subtract a time segment.

4. Such additional overhead must be accounted for; this requires that Ĉi, the WCET parameter
of the limited-preemption task τ̂i, must be updated (i.e., potentially increased) by recomputing
it using Equation 11 (reproduced below):

Ĉi ←
ni∑

j=1

(
c(vi,j) + cnt(vi,j)× q(vi,j)

)

(Notice that since some of the cnt(vi,j) values may have increased, the value of Ĉi may also
increase.)

5. Recall that we have been checking the validity of Equation 9 for values of td in T (Γ̂)1, the
partial testing set of Γ, considered in increasing order. Since we are currently considering td,
we have therefore already validated that Equation 9 previously held for values of t < td in the
testing set. The crucial observation now is that the increase in the value of Ĉi for any i with
Di > td does not invalidate Equation 9 for any t < td, because the increased Ĉi values only
contribute to the cumulative demand (the first term in the LHS of Equation 9) for values of
t ≥ td. Hence, we do not need to go back and re-validate Equation 9 for values of t smaller
than td.

6. Having thus modified the cnt(vi,j) variables (as in Equation 14) in order to ensure that
Equation 9 is satisfied by Γ̂ for td, we update the value of td to the next-smallest value in
T (Γ̂)1, and return to Step 1 above.

7. Once td reaches Dmax, there are no remaining tasks with Di > td, and so we are done
updating the cnt variables. At this point, we check if the total utilization of the system,∑n

i=1
W CET (τi)

Ti
> 1. If it is, the system cannot be scheduled.

8. For an implicit-deadline system with U ≤ 1, we prove in Lemma 2 that the slack will never
be < 0 at any later time. Therefore, we know that the system is schedulable and can return
immediately.

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:13

9. For a constrained-deadline system, we check the slack at each remaining point td in the testing
set T (Γ̂)2 up to and including the testing set’s upper bound, described by Expression 3. If the
slack is found to be < 0, the system is unschedulable, and we return immediately. Otherwise,
is system is deemed to be schedulable.

Computational Complexity. The number of iterations of the for-loops of Lines 6 and 23 dominate
the computational complexity; the other loops in the algorithm are polynomial in the number
of tasks or number of vertices in a chain. The number of iterations of Line 6 is proportional to
Dmax; for implicit-deadline systems, this is the only loop that executes. For constrained-deadline
systems, the combined number of iterations for both loops is the number of testing set points. In
general, for constrained-deadline sporadic task systems scheduled on a single processor, the testing
set can be exponential in the number of tasks, but is psuedo-polynomial as long as the utilization
is bounded by a fixed constant strictly less than 1 [8]. For MPS sporadic tasks, the utilization
can change as we add preemption points. However, because we only continue to add preemption
points as the testing set is traversed up to Dmax, the testing set remains pseudo-polynomial in
size unless the utilization reaches exactly 1, in which case it becomes exponential (bounded by the
least-common multiple of the task periods).

Proof of Correctness/Optimality. We now provide formal arguments that our approach for
chains yields a correct assignment of βi values for all tasks (Theorem 3) and is optimal in the
sense that if the approach returns the system is not schedulable, then there is no assignment
of βis that would cause the system to become schedulable (Theorem 4).

Before we prove the two main theorems of the section, we prove a useful invariant for the for-loop
in Line 6 of Algorithm 1. The remainder of this section assumes the fixed-preemption model where
a preemption is always taken at a fixed-preemption point (i.e., incurring the teardown/startup
costs). In this model, it can be shown that Equation 9 remains a necessary and sufficient condition
for limited-preemption EDF schedulability. However, under other preemption models where we
may skip/delay preemptions, Equation 9 is only a sufficient condition. Thus, only the correctness
theorem will hold, and we leave an investigation of optimality for these more dynamic settings to
future research.

▶ Lemma 1. At the beginning of each iteration of the for-loop at Line 6 with td being the current
testing set interval considered, the following statements hold:
1. For any t < td, Equation 9 is satisfied for the current set of βi values.
2. For any τi ∈ Γ such that Di ≤ td, the value of βi set by the algorithm is maximum (over all

possible schedulable chunk-size configurations of Γ).

Proof. Lemma 1 is, as expected, proved by induction.

Initialization. Initially td equals Dmin; the minimum deadline is the first non-zero value of the
dbf function for all tasks. Thus, Statement 1 is true since at all prior timepoints the first term of
Equation 9 is zero and Equation 9 reduces to L ≤ L per the arguments in Section 3.2. Statement 2
is also vacuously true since β1 is set to its largest possible value max1≤j≤n1 (c(v1,j) + q(v1,j)) by
the previous loop and does not affect schedulability as τ1 cannot block any other task (by nature
of having the smallest relative deadline).

Maintenance. Let us consider the current testing-set point td. Let tc be the testing-set point
considered in the previous iteration of the for-loop. Assume that Statements 1 and 2 were true at
the beginning of the for-loop for point tc; we will show that the statements will hold for td.

LITES

3:14 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

For Statement 1, we must show that Equation 9 is not invalidated when we execute the for-loop
for tc. As was previously argued, for t < tc, the dbf values are unchanged as any changes made
to βi values in the iteration for tc only affect the Ĉi of tasks with Di > tc. Thus, Statement 1
continues to hold for all t < tc by assumption. We only need to show that the previous iteration
will set the corresponding β values such that Equation 9 will also be true at tc. However, this
obviously holds since for each τi with Di > tc, either βi already satisfied Equation 9 (and does
not change) or it is set by Line 12 of Algorithm 1 to the largest value that satisfies Equation 9 for
the current values of β.

Statement 2 follows from the last observation of the previous paragraph and by the assumption
that β values for all τi with Di ≤ tc are set to their maximum value by assumption and cannot
change at tc or after. Therefore, the Ĉi values that contribute to the dbf in Equation 9 at tc are
as small as possible. It therefore follows that any τj with tc ≤ Dj ≤ td has either already had its
βj value set to the largest possible to satisfy Equation 9 for some t < tc or has its value set to the
largest possible to satisfy Equation 9 at tc.

Termination. Let td be the last testing set interval considered by the for loop in Line 6. During
the execution of the loop, the algorithm may return the system is not schedulable. In the
case that not schedulable is returned, Statements 1 and 2 hold for all testing set intervals up to
(and including) td, but not necessarily after td. If the algorithm completes execution of the loop
without returning, the Statements 1 and 2 are guaranteed to hold for all testing set intervals in
T (Γ̂)1 (by properties of testing-sets for Equation 9 and that the last testing set point must be at
least DN). ◀

▶ Lemma 2. In an implicit-deadline task system, Equation 9 will be satisfied at all points
L > Dmax if U ≤ 1.

Proof. By contradiction. Consider some td > Dmax in the testing set at which Equation 9
fails to hold. At this point, there are no tasks where Di > td, and so Equation 9 becomes∑

τi∈Γ dbfi(td) ≤ td. From the definition of the dbf:∑
τi∈Γ

max
(⌊

td −Di

Ti

⌋
+ 1, 0

)
· Ci > td

Since for an implicit-deadline task system, Di = Ti for all tasks τi,∑
τi∈Γ

max
(⌊

td

Ti

⌋
, 0
)
· Ci > td

From which it follows that∑
τi∈Γ

max
(

td

Ti
, 0
)
· Ci > td

As td and Ti are both positive:∑
τi∈Γ

td

Ti
· Ci > td

which implies that U > 1. ◀

▶ Theorem 3. If the schedulability test returns the system is schedulable, then assignment
of βi values by the algorithm in Algorithm 1 ensures that the task system meets all deadlines when
scheduled by limited-preemption EDF.

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:15

Proof. The termination argument of Lemma 1 argues that Statement 1 and therefore Equation 9
hold for all testing set points in T (Γ̂)1. If the system is an implicit-deadline system, then by the
check in line 18, the system utilization must be ≤ 1; by Lemma 2, Statement 1 will continue to
hold for all points in T (Γ̂)2. If the system is a constrained-deadline system, the loop in Line 23
will complete and return the system is schedulable if and only if Equation 9 holds for all
points in T (Γ̂)2.

Since Equation 9 is sufficient (and necessary for the fixed-preemption model), the task system
Γ is schedulable by limited-preemption EDF when the assigned chunk-sizes βi are used. ◀

▶ Theorem 4. If the schedulability test returns the system is not schedulable, then there
does not exist an assignment of βi values such that Equation 6 is satisfied.

Proof. If the system is not schedulable is returned while processing a testing-set interval
td in T (Γ̂)1 then either ∆(td) < 0 or βi < q(vi,j) for some i and j. In either case, Statement 2
of Lemma 1 implies that the βi’s set prior to td are as large as possible with respect to t < td

for Equation 9. Therefore, if ∆(td) < 0 is true, it is not possible to find another assignment of
βi’s to make this false. Otherwise, if βi < q(vi,j), the fact that βi was set to its maximum value
means there does not exist a larger possible βi to successfully fit task execution into given the
startup/teardown costs q(vi,j) of the phase vi,j .

If the system is not schedulable is returned while processing a testing-set interval td in
T (Γ̂)2, then Equation 9 is false for some td ∈ T (Γ̂)2. The right-side term of equation 9 considers
only tasks where Di > L; as T (Γ̂)2 begins past Dmax, there can be no tasks matching this
condition and therefore no assignment of βi that would reduce the right-side term. Per Statement
2 of Lemma 1, each βi has already been maximized when considering T (Γ̂)1; reducing some βi

can only increase the number of preemption points required and therefore increase the dbf of
some task in the left-side term of Equation 9. Therefore, there is no alternative assignment of β’s
that would reduce the left side of Equation 9 and cause the system to become schedulable. ◀

5 Systems of Conditional MPS Sporadic Tasks

In Section 4 we considered recurrent tasks representing “linear” workflows: each task models a
piece of straight-line code comprising a sequence of phases that are to be executed in order. In
many event-driven real-time application systems, however, the code modeled by a task may include
conditional constructs (‘if-then-else’ statements) in which the outcome of evaluating a condition
depends upon factors (such as the current state of the system, the values of certain external
variables, etc.), which only become known at run-time, and indeed may differ upon different
invocations of the task. Hence the precise sequence of phases that is to be executed when a task
is invoked is not known a priori. It is convenient to model such tasks as directed acyclic graphs
(DAGs) in which the vertices represent execution of straight-line code, and a vertex representing a
piece of straight-line code ending in a conditional expression has out-degree > 1 – see Figure 1 for
an example. In this figure the vertex a denotes a piece of straight-line code that ends with the
execution of a conditional expression. Depending upon the outcome of this execution, the code
represented by either the vertex b or the vertex c executes, after which the code represented by
the vertex d is executed. In this section, we briefly explain how our proposed Multi-Phase Secure
(MPS) workload model may be further extended (i.e., beyond the aspects discussed in Section 4)
to accommodate recurrent tasks that may include such conditional constructs.

LITES

3:16 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

a

b

c

d

(5, 2)

(3, 3)

Figure 1 Each vertex characterized by a pair of values; the former one representing the WCET of the
node/phase, c(v) and the latter one representing the sum of the startup and teardown cost, q(v). We
assume that the code represented by vertices a and d execute using the same security mechanism, whereas
the code represented by vertices b and c each execute using a distinct different mechanism.

5.1 Model
We now provide a more formal description of the conditional MPS sporadic task model. Each task
τi is characterized by a 3-tuple (Gi, Di, Ti) where Di and Ti are the relative deadline and period,
and Gi is a DAG: Gi = (Vi, Ei) with Ei ⊊ Vi × Vi. Each vertex vi,j ∈ Vi represents a phase of
computation, which must execute using a specified security mechanism. The interpretation of each
edge (vi,j , vi,k) ∈ E depends upon the outdegree (i.e., the number of outgoing edges) of vertex vi,j :
1. If this outdegree = 1, then the edge denotes a precedence constraint: vertex vi,k may only

begin to execute after vertex vi,j has completed execution.
2. If this outdegree is ≥ 2, then all the outgoing edges from vi,j collectively denote the choices

available upon the execution of a conditional construct: after vi,j completes execution, exactly
one of the vertices vi,k for which (vi,j , vi,k) ∈ E becomes eligible to start executing. It is
not known beforehand which one this may be, and different ones may become eligible upon
different invocations of the task.

A WCET function c : Vi → N is specified, with c(vi,j) denoting the WCET of node vi,j ∈ Vi.
An overhead function q : Vi → N is specified, with q(vi,j) denoting the startup/teardown cost
associated with the security mechanism using which vertex vi,j is to execute.

In the original model presented in [3], a simplifying assumption was made that teardown and
setup costs are always incurred when transitioning between any two jobs, regardless of whether
they use the same or different security mechanisms. This assumption was conservative, as it
did not account for cases where both jobs use the same security mechanism, in which case the
teardown and setup costs would not actually be incurred.

5.2 A Subtlety
A subtle issue arises when dealing with conditional code, which was not present in the consideration
of linear workflows in Section 4. Specifically, during the execution of conditional code, it is not
known at compile time which branch will be taken at runtime, and different invocations may
take different paths. In hard real-time systems, it is necessary to ensure that tasks meet their
deadlines under all possible runtime conditions. Thus, during pre-runtime schedulability analysis,
a conservative approach is adopted, assuming that each invocation of the task follows the “longest”
path – the one with the maximum cumulative execution requirement.

Standard algorithms are known for identifying the longest path through a DAG that have run-
ning time linear in the representation of the DAG. Under limited-preemption scheduling, however,
identifying the path through the DAG that has maximum cumulative execution requirement is
not entirely straightforward. Let us consider again the example DAG of Figure 1.

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:17

If the chunk size βi for this task were ≥ 7, then both branches can be executed non-preemptively.
The upper branch incurs a cost of 5 + 2 = 7 while for the lower branch the cost is 3 + 3 = 6;
therefore, the upper branch is the computationally more expensive one.
Now suppose βi = 4. Then the upper branch may need to execute in ⌈5/(4−2)⌉ or 3 contiguous
pieces, for a cumulative cost of 5 + 3 × 2 = 11. The lower branch may need to execute in
⌈3/(4− 3)⌉ or 3 contiguous pieces, for a cumulative cost of 3 + 3× 3 = 12, and is hence the
more expensive branch.

This example illustrates that the computationally most expensive path through a DAG that
represents conditional execution depends upon the value of the chunk size parameter (the βi

parameter of the task). As we saw in Section 4, the approach to scheduling MPS sporadic tasks
has been to convert each task to a limited-preemption sporadic task. The procedure for doing so
(Algorithm 1) repeatedly changes the values of the βi parameters of the tasks. As we adapt the
techniques of Section 4 to schedulability analysis of conditional MPS tasks, it is important to note
that the necessary improvements to handle conditional execution, including the correct analysis
of teardown and setup costs, have already been addressed in a separate extension paper [38]. In
that work, the unnecessary conservatism in the assumption that teardown and setup costs are
always incurred during transitions between jobs, regardless of whether they use the same security
mechanism is eliminated. This refinement leads to a more precise schedulability analysis, ensuring
that only the relevant overheads are considered and optimizing the overall analysis of conditional
MPS tasks. Thus, while this paper focuses on the linear task model and its optimization, the
more accurate treatment of conditional execution is fully covered in [38].

6 Empirical Evaluation

In the previous sections, we have developed algorithms to introduce preemptions into the execution
of the phases of multi-phase secure tasks. While these preemptions reduce the blocking that
higher-priority phases/jobs experience at runtime, they come at a cost – increased overhead due
to the additional teardown/startup costs that must be performed before and after every inserted
preemption. Thus, while the limited-preemption approach proposed in this paper theoretically
dominates the non-preemptive approach (i.e., each phase is executed non-preemptively and
preemptions are permitted only between phases of a task), it is unclear how much schedulability
improvement on average we can expect a system designer to obtain from using our proposed
approach.

In this section, we provide an empirical analysis on that topic via the application of the
schedulability tests of Section 4 over synthetically-generated MPS task systems. We compare the
proposed schedulability tests with existing limited-preemption scheduling where each phase of a
task is executed fully non-preemptively.

By using the refined algorithms presented in this work that permit pseudo-polynomial running
times for bounded utilization task sets, and correcting implementation issues identified in our
earlier work [3], we were able to extend our experiments to a broader parameter space and larger
task sets. We also directly evaluate the running times of our algorithms and implementation, and
compare them to the original versions from [3].

As before, we limit our scope to evaluating linear task sequences; we refer readers interested in
further evaluation, analysis, and refinement of the conditional model to [38].

6.1 Experimental Setup
The evaluation was conducted using a C++ simulation. All tests were performed on a a server
with two Intel Xeon Gold 6130 (Skylake) processors running at 2.1 GHz, and with 64GB of
memory. Multiple task sets were evaluated in parallel; each task set was given a single thread

LITES

3:18 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

Figure 2 Schedulability ratio of implicit-deadline tasksets with 3 tasks each and periods of 10–30 time
units. On the left, tasks are randomly assigned 1–4 phases; on the right, 1–6.

on which to run. We evaluate task sets for many parameter variations, including the task count,
number of phases per task, utilization, and task periods. In some cases, the number of phases per
task is fixed; where it is not fixed, we select the number of phases for each task following a uniform
distribution in the given range. Task periods are selected either from a uniform distribution
within the period range specified for each test or, where specified below, a log-uniform distribution.
For each combination of fixed parameters, we generate 1000 random task systems. For each
system, we use the UUniFast algorithm [12], first to assign a total utilization Ci

Ti
to each task

and then to distribute the task’s total allotted time Ci between the execution times c(vi,j) and
startup/teardown overhead q(vi,j

) for each of its phases. We note that compared to the prior work
in [3] that this paper extends, we have adjusted this distribution to be more consistent and to be
independent of the number of phases in the task. We then evaluate each task set against three
algorithms: chains, the algorithm presented in section 4, phase NP, in which there is a static
preemption point between each phase but no additional preemption points can be inserted, and
fully NP, in which the entire task runs as a single non-preemptive chunk.

We evaluate both implicit-deadline and constrained-deadline task systems. In an implicit-
deadline system, Di = Ti for each task. In a constrained-deadline system, we choose a random
value for each Di that is uniformly distributed between the task’s execution time and its period
Ti. For implicit-deadline systems, we evaluate U at increments of 0.1 in [0, 1]. We note that,
compared to the prior version of this work in [3], the improvement to the testing set described
in Section 4 allows us to evaluate these systems in a reasonable amount of time even for large
numbers of tasks; to understand the impact of this optimization, we also test the exponential set
presented in the original version on systems with 8 tasks or fewer and compare their execution
times. For constrained-deadline systems, the testing set is bounded by a term that is determined
in part by a factor 1

1−U ; as U → 1, the testing set size becomes very large and becomes infeasible
to evaluate. We therefore limit our evaluation of constrained-deadline systems to utilizations in
[0, 0.9].

6.2 Schedulability Analysis Results
Schedulability of Implicit-Deadline Systems. Figure 2 shows the schedulability ratio of each
of the three tests described above – chains, phase NP, and fully NP. For each test, tasks with
low utilization are all schedulable, but schedulability decreases as the utilization of the system
increases. By inserting additional preemption points, the chains algorithm is able to obtain a

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:19

(a) Implicit deadlines, 1–4 phases. (b) Constrained deadlines, 1–4 phases.

(c) Implicit deadlines, 3 tasks per set. (d) Constrained deadlines, 3 tasks per set.

(e) Implicit deadlines, utilization 0.9. (f) Constrained deadlines, utilization 0.9.

Figure 3 Schedulability ratio of chains algorithm when varying taskset parameters. All tasks have
periods selected uniformly from 10–30 time units.

LITES

3:20 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

Figure 4 Comparison of the effect on schedulability of changing the period range of the generated
tasks. Each set contains 3 implicit-deadline tasks with 1–4 phases.

schedulability improvement over a phase NP approach on these higher-utilization tasks. Once
utilization reaches 1, it is not possible to insert any preemption points, as inserting a preemption
point would increase the startup/teardown overhead and cause the utilization to exceed 1; therefore,
the chains algorithm does not lead to a schedulability improvement. Tasks with 1-6 phases have a
slightly higher schedulability ratio than tasks with 1-4 phases; we explore this effect more in the
paragraph below.

Figure 3 shows the impact of various parameters of the task system on the schedulability ratio
using the chains algorithm and periods of 10–30 time units. In Figure 3a, tasks are randomly
assigned 1-4 phases, while the utilization and tasks per taskset are varied. In Figure 3c, the
number of tasks is held constant at 3, and each taskset is assigned a fixed number of phases,
varying from 2 to 20 phases per task. In Figure 3e, the utilization is held constant at 0.9. As
in Figure 2, increasing utilization reduces the schedulability ratio. Here, it is clearly visible that
increasing the number of tasks or number of phases per task improves the schedulability ratio.
When these parameters are increased, the system’s total execution time is divided among more
tasks or among more phases, so that each task has a lower blocking time. The reduction in
blocking time makes the system more likely to be schedulable.

For completeness, we also evaluate the performance of the algorithm on a wider 1–1000 time
unit period range, using both a uniform distribution of periods within this range, as well as the
log-uniform distribution recommended in [19]. Figure 4 shows how the schedulability of these task
sets compares to the tasksets with 10–30 unit periods. The schedulability of the sets with the
wider period range is much lower; in particular, tasksets containing a task with a small period are
less likely to be schedulable. We hypothesize that this is due to these high-frequency tasks having
less ability to expand their execution time as preemption points are inserted. This trend is also
apparent in Figure 5; unlike tasks with 10–30 unit periods, increasing the number of tasks increases
the probability of generating a high-frequency task and therefore causes the schedulability ratio to
decrease.

Schedulability of Constrained-Deadline Systems. Figure 6 shows the schedulability ratio for
each of the three scheduling algorithms on constrained-deadline tasksets, in which all other task
parameters follow the same configuration as Figure 2. In a constrained-deadline system, the
chains algorithm is also able to obtain a schedulability improvement over a phase NP approach, by

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:21

(a) Implicit deadlines, 1–4 phases. (b) Implicit deadlines, 3 tasks per set.

(c) Implicit deadlines, utilization 0.9.

Figure 5 Schedulability ratio of chains algorithm when varying taskset parameters. All tasks have
periods selected from 1–1000 time units using a log-uniform distribution.

inserting additional preemption points to reduce the blocking time. As the tasks in these systems
have shorter deadlines than the implicit-deadline systems, all three algorithms obtain a lower
schedulability ratio.

The right column of Figure 3 shows the effect of varying different taskset parameters for the
constrained-deadline task sets, which otherwise have the same parameter configurations as the
implicit-deadline systems. For constrained-deadline tasks, the schedulability ratio is generally
lower, and the effect of increasing the phase count is smaller. Increasing the number of tasks has
only a very small effect on the schedulability ratio. We hypothesize that, although increasing the
task count still tends to reduce the system’s blocking times, it also increases the probability that
one or more tasks will have a tightly-constrained deadline, which reduces the chance that the
system will be schedulable.

LITES

3:22 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

Figure 6 Comparison of schedulability ratios. Each set has 3 constrained-deadline tasks with periods
selected uniformly from 10–30 time units. On the left, tasks are randomly assigned 1–4 phases; on the
right, 1–6.

3 4
Tasks per taskset

10 5

10 3

10 1

101

103

Ex
ec

ut
io

n
tim

e
pe

r t
as

ks
et

 (s
ec

)

Implementation
Updated
Original

Figure 7 Comparison of the time needed to determine schedulability for task sets with 1-4 phases,
utilization of 0.9, and periods of 10-30. The left side is the rewritten C++ implementation; the right side
is the original implementation from [3]. Note the log scale.

6.3 Runtime Performance

The implementation of the algorithm in our prior work [3] could only evaluate sets of a few tasks
in a reasonable amount of time. In this work, we rewrite the original Python-based simulation
using C++, and correct an implementation issue with the original construction of the hyperperiod-
bounded testing set. These changes lead to significant performance improvements on their own.
In Figure 7 we randomly generate and test 50 task sets with either 3 or 4 tasks each; the original
implementation is compared to the rewritten one, which is configured to test points in the full,
exponentially-sized testing set. For sets of 3 tasks, the median execution time improves by
approximately 70× and the mean execution time improves by around 250×. For sets of 4 tasks,
the median improves by around 150× and the mean execution time by more than 3500×. These
improvements enable testing larger task sets, as shown in the following sections.

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:23

Figure 8 Time to test schedulability of sets of
implicit-deadline tasks of varying sizes with periods
of 10–30 time units, 1–4 phases, and utilization of
0.9, either testing up to the hyperperiod or stopping
at Dmax. Note the logarithmic scale.

Figure 9 Time to test schedulability of sets of
constrained-deadline tasks of varying sizes with peri-
ods of 10–30 time units, 1–4 phases, and utilization
of 0.9, using the psuedo-polynomial testing set bound
from [7]. Note the logarithmic scale.

Figure 10 Comparison of the sizes of the hyperperiod and pseudo-polynomial testing sets. For each
utilization, we generated 100 sets of 5 constrained-deadline tasks with periods from 10–30, and 1–4 phases.

In this work, we also introduce an optimization for implicit-deadline task systems that allows
us to avoid testing timepoints past Dmax. In Figure 8, we analyze the impact of this optimization.
Using the full, exponential testing set from the prior work, our implementation is able to test
tasksets with 6 tasks in only a few seconds, but the time needed still scales exponentially with the
number of tasks; past eight tasks per set, the analysis once again takes an unreasonable amount
of time to run. Using the optimization for implicit-deadline systems, evaluating schedulability is
orders of magnitude faster, and the evaluation times also become more consistent for each taskset.
This optimization allows us to determine the schedulability ratio for systems of up to 20 tasks,
the results of which are displayed in Figure 3. As the time needed to determine schedulability
now scales much more slowly with respect to the number of tasks, we believe that evaluating even
larger task sets is also possible.

In Figure 9, we evaluate the performance of determining schedulability of constrained-deadline
task sets using the pseudo-polynomial bound on the testing set identified in [7]. Compared to the
full hyperperiod testing set, running the evaluation with this testing set is much faster. However,

LITES

3:24 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

we note that it is still slower than the optimized implicit-deadline bound from Figure 8. Moreover,
the distribution of execution times exhibits high variability. Perhaps most importantly, our
evaluation is on task sets where U = 0.9, at which the pseudo-polynomial bound is still reasonably
small. As shown in Figure 10, when U → 1, the size of the pseudo-polynomial set approaches the
hyperperiod set, and it becomes increasingly less feasible to iterate over the entire testing set.

7 Related Work

The trade-off between security and timing constraints in real-time, IoT, and edge computing
environments is crucial as it involves balancing robust security measures with the need for real-time
performance. Several studies have explored these trade-offs. For instance, Leonardi et al. [22] and
Lemieux-Mack et al [21] present mixed-integer linear programming approaches to optimize security
and schedulability in real-time embedded systems under cyber-attacks. Wang et al. [40] consider
the trade-off between security and overhead for pointer integrity checks. These papers attempt to
maximize security without overloading the target system, but do not consider preemption-related
overhead induced by the startup/teardown costs of the selected security mechanisms.

Limited-preemption scheduling, surveyed in 2013 by Buttazzo et al. [13], balances the increased
blocking times of non-preemptive execution with the increased overheads caused by context
switching. The original models of Baruah and Bertogna minimize context switching by finding the
longest time each task may execute non-preemptively without compromising schedulability [4, 9],
but do not account for the worst-case overhead due to the resulting preemptions.

Later approaches account for both blocking time and preemption overheads by defining
instants that preemption can occur during task execution (called preemption points) to guarantee
schedulability. In [10], Bertogna et al. develop an algorithm to find preemption points for tasks
scheduled with EDF under the assumption that the preemption overhead for each task is constant.
In contrast, in our MPS task model, individual task phases have unique preemption costs. A
similar model to that of [10], but for fixed-priority (FP) scheduling, again with constant preemption
overheads for each task, was developed by Yao et al. in [43].

In [11], Bertogna et al. model tasks as sequences of “basic blocks,” and present algorithms for
selecting preemption points between those blocks for both EDF and FP scheduling. Although
less flexible than the earlier “floating” preemption point models where a preemption point can
be placed anywhere, that model allows different preemption costs between blocks. The latter
is similar to the algorithm in [10], but supports domain-specific preemption costs rather than a
constant overhead per task.

Other work on limited-preemption scheduling, including cache-aware analysis [28], probabilis-
tic [27] or “typical” execution models [6] are outside the scope of this paper.

8 Conclusions

We believe that the concurrent consideration of timing and security properties within a single unified
framework is an effective means of extending the rigorous approach of real-time scheduling theory
to guaranteeing appropriately-articulated security properties in resource-constrained embedded
systems. In real-time scheduling theory, pre run-time verification of timing correctness is performed
using models of run-time behavior; these models are carefully crafted for specific purposes: e..g,
the sporadic task model [7] has been designed to represent recurrent processes for which it is safe
to assume a minimum duration between successive invocations and for which timing correctness is
defined as the ability to meet all deadlines.

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:25

In this work, as in [3], we have extended the sporadic task model in a security-cognizant
manner, to deal with a particular kind of security-cognizant workload model. For the specific
model that we have proposed, we have developed algorithms that are able to provide provable
correctness of both the timing and the security properties that are considered.

In this extension to our original work in [3], we have corrected the long-standing condition
of Baruah and Bertogna [4, 9] for EDF schedulability of limited-preemption tasks. Leveraging
this, we reduced the execution time complexity of our algorithm, and demonstrated that in an
implicit-deadline task system, it can run quickly even for large numbers of tasks.

We note that the improvements made to the algorithm in this extension also apply to the
generalization of the model to conditional code that we presented in [3]. In an already-published
extension to that work [38], we further improve on the conditional execution model by removing
the assumption that startup/teardown costs are paid at every phase transition and analyze its
performance.

The complexity improvements made in this extension, in combination with a more efficient
implementation of the algorithm, allowed us to evaluate larger and more complex task systems. We
have also illustrated the scaling properties of the algorithm’s execution time for both constrained-
and implicit-deadline systems, and shown how its ability to schedule tasks is affected by varying
their properties. Finally, we have clarified several details of our algorithm and have provided a
more complete demonstration of the improved schedulability offered by our algorithm over a phase
or fully non-preemptive approach.

Although the work described in this manuscript arose out of our related projects in embedded
systems security, we emphasize that we are not claiming that our algorithms solve any security
problems; rather, they solve a scheduling problem that may arise from a class of security problems
for which an adequate protective response gives rise to execution environments with bounded-cost
startup/teardown operations. As future work, we intend to evaluate these scheduling models in
conjunction with real-world attack/defense models.

On the other hand, we believe that our results are relevant beyond just security considerations:
that they may, in fact, be considered to be further contributions to the real-time scheduling
theory literature dealing with limited-preemption scheduling. They may also be extended to other
limited-preemption scheduling frameworks, e.g., for multi-core platforms.

References
1 N. C. Audsley, A. Burns, R. I. Davis, K. W. Tin-

dell, and A. J. Wellings. Fixed priority preemp-
tive scheduling: An historical perspective. Real-
Time Systems, 8:173–198, 1995. doi:10.1007/
BF01094342.

2 Mohammad Fakhruddin Babar and Monowar
Hasan. DeeptrustˆRT: Confidential deep neural
inference meets real-time! In Rodolfo Pellizzoni,
editor, 36th Euromicro Conference on Real-Time
Systems, ECRTS 2024, July 9-12, 2024, Lille,
France, volume 298 of LIPIcs, pages 13:1–13:24.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024. doi:10.4230/LIPIcs.ECRTS.2024.13.

3 Sanjoy Baruah, Thidapat Chantem, Nathan
Fisher, and Fatima Raadia. A scheduling model
inspired by security considerations. In 2023 IEEE
26th International Symposium on Real-Time Dis-
tributed Computing (ISORC), pages 32–41, 2023.
doi:10.1109/ISORC58943.2023.00016.

4 Sanjoy K. Baruah. The limited-preemption unipro-
cessor scheduling of sporadic task systems. In
17th Euromicro Conference on Real-Time Systems
(ECRTS 2005), 6-8 July 2005, Palma de Mallorca,
Spain, Proceedings, pages 137–144. IEEE Com-
puter Society, 2005. doi:10.1109/ECRTS.2005.32.

5 Sanjoy K. Baruah. Security-cognizant real-time
scheduling. In 25th IEEE International Sym-
posium On Real-Time Distributed Computing,
ISORC 2022, Västerås, Sweden, May 17-18, 2022,
pages 1–9. IEEE, 2022. doi:10.1109/ISORC52572.
2022.9812766.

6 Sanjoy K. Baruah and Nathan Fisher. Choosing
preemption points to minimize typical running
times. In Proceedings of the 27th International
Conference on Real-Time Networks and Systems,
RTNS 2019, Toulouse, France, November 06-08,
2019, RTNS ’19, pages 198–208, New York, NY,
USA, 2019. Association for Computing Machinery.
doi:10.1145/3356401.3356407.

LITES

https://doi.org/10.1007/BF01094342
https://doi.org/10.1007/BF01094342
https://doi.org/10.4230/LIPIcs.ECRTS.2024.13
https://doi.org/10.1109/ISORC58943.2023.00016
https://doi.org/10.1109/ECRTS.2005.32
https://doi.org/10.1109/ISORC52572.2022.9812766
https://doi.org/10.1109/ISORC52572.2022.9812766
https://doi.org/10.1145/3356401.3356407

3:26 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

7 Sanjoy K. Baruah, Aloysius K. Mok, and Louis E.
Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In Proceedings of
the Real-Time Systems Symposium - 1990, Lake
Buena Vista, Florida, USA, December 1990, pages
182–190, Orlando, Florida, 1990. IEEE Computer
Society. doi:10.1109/REAL.1990.128746.

8 Sanjoy K Baruah, Louis E Rosier, and Rodney R
Howell. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks
on one processor. Real-Time Syst., 2(4):301–324,
November 1990. doi:10.1007/BF01995675.

9 Marko Bertogna and Sanjoy K. Baruah. Limited
preemption EDF scheduling of sporadic task sys-
tems. IEEE Trans. Ind. Informatics, 6(4):579–591,
2010. doi:10.1109/TII.2010.2049654.

10 Marko Bertogna, Giorgio Buttazzo, Mauro Mari-
noni, Gang Yao, Francesco Esposito, and Marco
Caccamo. Preemption Points Placement for Spo-
radic Task Sets. In 2010 22nd Euromicro Confer-
ence on Real-Time Systems, pages 251–260, 2010.
doi:10.1109/ECRTS.2010.9.

11 Marko Bertogna, Orges Xhani, Mauro Marinoni,
Francesco Esposito, and Giorgio Buttazzo. Op-
timal selection of preemption points to minimize
preemption overhead. In 2011 23rd Euromicro
Conference on Real-Time Systems, pages 217–227.
IEEE, 2011. doi:10.1109/ECRTS.2011.28.

12 Enrico Bini and Giorgio C Buttazzo. Mea-
suring the performance of schedulability tests.
Real-Time Systems, 30(1-2), 2005. doi:10.1007/
s11241-005-0507-9.

13 Giorgio C Buttazzo, Marko Bertogna, and Gang
Yao. Limited preemptive scheduling for real-time
systems. a survey. IEEE Trans. Industr. Inform.,
9(1):3–15, February 2013. doi:10.1109/TII.2012.
2188805.

14 John Cavicchio and Nathan Fisher. Integrating
preemption thresholds with limited preemption
scheduling. In 2020 IEEE 26th International Con-
ference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, August
2020. doi:10.1109/RTCSA50079.2020.9203646.

15 Friedrich Eisenbrand and Thomas Rothvoß. EDF-
schedulability of synchronous periodic task sys-
tems is coNP-hard. In Moses Charikar, editor,
Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010,
pages 1029–1034. SIAM, January 2010. doi:
10.1137/1.9781611973075.83.

16 Pontus Ekberg. Models and Complexity Re-
sults in Real-Time Scheduling Theory. PhD
thesis, Uppsala University, Sweden, 2015.
URL: https://nbn-resolving.org/urn:nbn:se:
uu:diva-267017.

17 Pontus Ekberg and Wang Yi. Uniprocessor feasibil-
ity of sporadic tasks remains conp-complete under
bounded utilization. In 2015 IEEE Real-Time Sys-
tems Symposium, RTSS 2015, San Antonio, Texas,
USA, December 1-4, 2015, pages 87–95. IEEE Com-
puter Society, 2015. doi:10.1109/RTSS.2015.16.

18 Pontus Ekberg and Wang Yi. Uniprocessor fea-
sibility of sporadic tasks with constrained dead-
lines is strongly conp-complete. In 27th Euromi-
cro Conference on Real-Time Systems, ECRTS

2015, Lund, Sweden, July 8-10, 2015, pages 281–
286. IEEE Computer Society, 2015. doi:10.1109/
ECRTS.2015.32.

19 P. Emberson, R. Stafford, and R.I. Davis. Tech-
niques for the synthesis of multiprocessor tasksets.
In WATERS workshop at the Euromicro Confer-
ence on Real-Time Systems, pages 6–11, July 2010.
1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Sys-
tems ; Conference date: 06-07-2010.

20 Ke Jiang, Adrian Alin Lifa, Petru Eles, Zebo
Peng, and Wei Jiang. Energy-aware design of
secure multi-mode real-time embedded systems
with FPGA co-processors. In Michel Auguin,
Robert de Simone, Robert I. Davis, and Em-
manuel Grolleau, editors, 21st International Con-
ference on Real-Time Networks and Systems,
RTNS 2013, Sophia Antipolis, France, October
17-18, 2013, pages 109–118. ACM, October 2013.
doi:10.1145/2516821.2516830.

21 Cailani Lemieux-Mack, Kevin Leach, Ning Zhang,
Sanjoy Baruah, and Bryan C Ward. Optimizing
runtime security in real-time embedded systems.
In Proc. of Workshop on Optimization for Embed-
ded and Real-time Systems (OPERA), December
2024.

22 Sandro Di Leonardi, Federico Aromolo, Pietro
Fara, Gabriele Serra, Daniel Casini, Alessandro
Biondi, and Giorgio C. Buttazzo. Maximizing the
security level of real-time software while preserv-
ing temporal constraints. IEEE Access, 11:35591–
35607, 2023. doi:10.1109/ACCESS.2023.3264671.

23 M. Lin, L. Xu, L.T. Yang, X. Qin, N. Zheng, Z. Wu,
and M. Qiu. Static security optimization for real-
time systems. IEEEII, 5(1):22–37, February 2009.
doi:10.1109/TII.2009.2014055.

24 C. Liu and J. Layland. Scheduling algorithms
for multiprogramming in a hard real-time envi-
ronment. Journal of the ACM, 20(1):46–61, 1973.
doi:10.1145/321738.321743.

25 Yin Liu, Siddharth Dhar, and Eli Tilevich. Only
pay for what you need: Detecting and removing
unnecessary TEE-based code. Journal of Systems
and Software, 188:111253, 2022. Publisher: Else-
vier. doi:10.1016/j.jss.2022.111253.

26 Yue Ma, Wei Jiang, Nan Sang, and Xia Zhang.
ARCSM: A distributed feedback control mecha-
nism for security-critical real-time system. In 10th
IEEE International Symposium on Parallel and
Distributed Processing with Applications, ISPA
2012, Leganes, Madrid, Spain, July 10-13, 2012,
pages 379–386. IEEE Computer Society, July 2012.
doi:10.1109/ISPA.2012.56.

27 Filip Markovic, Jan Carlson, Radu Dobrin, Bjorn
Lisper, and Abhilash Thekkilakattil. Probabilis-
tic response time analysis for fixed preemption
point selection. In 2018 IEEE 13th Interna-
tional Symposium on Industrial Embedded Systems
(SIES), pages 1–10, 2018. doi:10.1109/SIES.2018.
8442099.

28 Filip Marković, Jan Carlson, and Radu Dobrin.
Cache-aware response time analysis for real-time
tasks with fixed preemption points. In 2020 IEEE
Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pages 30–42, 2020.
doi:10.1109/RTAS48715.2020.00-19.

https://doi.org/10.1109/REAL.1990.128746
https://doi.org/10.1007/BF01995675
https://doi.org/10.1109/TII.2010.2049654
https://doi.org/10.1109/ECRTS.2010.9
https://doi.org/10.1109/ECRTS.2011.28
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/TII.2012.2188805
https://doi.org/10.1109/TII.2012.2188805
https://doi.org/10.1109/RTCSA50079.2020.9203646
https://doi.org/10.1137/1.9781611973075.83
https://doi.org/10.1137/1.9781611973075.83
https://nbn-resolving.org/urn:nbn:se:uu:diva-267017
https://nbn-resolving.org/urn:nbn:se:uu:diva-267017
https://doi.org/10.1109/RTSS.2015.16
https://doi.org/10.1109/ECRTS.2015.32
https://doi.org/10.1109/ECRTS.2015.32
https://doi.org/10.1145/2516821.2516830
https://doi.org/10.1109/ACCESS.2023.3264671
https://doi.org/10.1109/TII.2009.2014055
https://doi.org/10.1145/321738.321743
https://doi.org/10.1016/j.jss.2022.111253
https://doi.org/10.1109/ISPA.2012.56
https://doi.org/10.1109/SIES.2018.8442099
https://doi.org/10.1109/SIES.2018.8442099
https://doi.org/10.1109/RTAS48715.2020.00-19

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, and C. Gill 3:27

29 Jonathan M McCune, Bryan J Parno, Adrian
Perrig, Michael K Reiter, and Hiroshi Isozaki.
Flicker: An execution infrastructure for TCB
minimization. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Com-
puter Systems 2008, pages 315–328, 2008. doi:
10.1145/1352592.1352625.

30 Tanmaya Mishra, Thidapat Chantem, and Ryan M.
Gerdes. Teecheck: Securing intra-vehicular com-
munication using trusted execution. In 28th In-
ternational Conference on Real Time Networks
and Systems, RTNS 2020, Paris, France, June 10,
2020, RTNS 2020, pages 128–138, New York, NY,
USA, 2020. Association for Computing Machinery.
doi:10.1145/3394810.3394822.

31 Sibin Mohan, Man Ki Yoon, Rodolfo Pellizzoni,
and Rakesh Bobba. Real-time systems security
through scheduler constraints. In Proceedings of
the 2014 Agile Conference, AGILE ’14, pages 129–
140, 2014. doi:10.1109/ECRTS.2014.28.

32 Anway Mukherjee, Tanmaya Mishra, Thidapat
Chantem, Nathan Fisher, and Ryan M. Gerdes.
Optimized trusted execution for hard real-time ap-
plications on COTS processors. In Proceedings of
the 27th International Conference on Real-Time
Networks and Systems, RTNS 2019, Toulouse,
France, November 06-08, 2019, RTNS ’19, pages
50–60, New York, NY, USA, 2019. Association
for Computing Machinery. doi:10.1145/3356401.
3356419.

33 M. Nasri, T. Chantem, G. Bloom, and R. M.
Gerdes. On the pitfalls and vulnerabilities of
schedule randomization against schedule-based at-
tacks. In 2019 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS),
pages 103–116, April 2019. doi:10.1109/RTAS.
2019.00017.

34 Mitra Nasri, Geoffrey Nelissen, and Gerhard
Fohler. A new approach for limited preemptive
scheduling in systems with preemption overhead.
In 28th Euromicro Conference on Real-Time Sys-
tems, ECRTS 2016, Toulouse, France, July 5-8,
2016, pages 25–35. IEEE Computer Society, July
2016. doi:10.1109/ECRTS.2016.15.

35 OP-TEE. URL: https://www.trustedfirmware.
org/projects/op-tee/.

36 OP-TEE Documentation: Core: Pager. URL:
https://optee.readthedocs.io/en/latest/
architecture/core.html#pager.

37 Miroslav Pajic, Nicola Bezzo, James Weimer, Ra-
jeev Alur, Rahul Mangharam, Nathan Michael,
George J. Pappas, Oleg Sokolsky, Paulo Tabuada,

Stephanie Weirich, and Insup Lee. Towards syn-
thesis of platform-aware attack-resilient control
systems. In Linda Bushnell, Larry Rohrbough,
Saurabh Amin, and Xenofon D. Koutsoukos, ed-
itors, 2nd ACM International Conference on
High Confidence Networked Systems (part of CPS
Week), HiCoNS 2013, Philadelphia, PA, USA,
April 9-11, 2013, pages 75–76. ACM, April 2013.
doi:10.1145/2461446.2461457.

38 Fatima Raadia, Nathan Fisher, Thidapat
Chantem, and Sanjoy Baruah. An improved
security-cognizant scheduling model. In 2024
IEEE 27th International Symposium on Real-Time
Distributed Computing (ISORC), pages 1–8. IEEE,
2024. doi:10.1109/ISORC61049.2024.10551349.

39 Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu,
and Ning Zhang. Rt-tee: Real-time system avail-
ability for cyber-physical systems using arm trust-
zone. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 352–369. IEEE, 2022.
doi:10.1109/SP46214.2022.9833604.

40 Yujie Wang, Cailani Lemieux-Mack, Thidapat
Chantem, Sanjoy Baruah, Ning Zhang, and
Bryan C Ward. Partial context-sensitive pointer
integrity for real-time embedded systems. In 2024
IEEE Real-Time Systems Symposium (RTSS),
pages 415–426. IEEE Computer Society, 2024.
doi:10.1109/RTSS62706.2024.00042.

41 T. Xie and X. Qin. Scheduling security-critical
real-time applications on clusters. IEEE Trans-
actions on Computers, 55(7):864–879, July 2006.
doi:10.1109/TC.2006.110.

42 Gang Yao, Giorgio Buttazzo, and Marko Bertogna.
Feasibility analysis under fixed priority scheduling
with fixed preemption points. In 2010 IEEE 16th
International Conference on Embedded and Real-
Time Computing Systems and Applications, pages
71–80, 2010. doi:10.1109/RTCSA.2010.40.

43 Gang Yao, Giorgio Buttazzo, and Marko Bertogna.
Feasibility analysis under fixed priority schedul-
ing with limited preemptions. Real-Time Sys-
tems, 47(3):198–223, 2011. Publisher: Springer.
doi:10.1007/s11241-010-9113-6.

44 Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and
Lui Sha. Taskshuffler: A schedule randomization
protocol for obfuscation against timing inference
attacks in real-time systems. In 2016 IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS), Vienna, Austria, April 11-
14, 2016, pages 111–122. IEEE, IEEE Computer
Society, 2016. doi:10.1109/RTAS.2016.7461362.

LITES

https://doi.org/10.1145/1352592.1352625
https://doi.org/10.1145/1352592.1352625
https://doi.org/10.1145/3394810.3394822
https://doi.org/10.1109/ECRTS.2014.28
https://doi.org/10.1145/3356401.3356419
https://doi.org/10.1145/3356401.3356419
https://doi.org/10.1109/RTAS.2019.00017
https://doi.org/10.1109/RTAS.2019.00017
https://doi.org/10.1109/ECRTS.2016.15
https://www.trustedfirmware.org/projects/op-tee/
https://www.trustedfirmware.org/projects/op-tee/
https://optee.readthedocs.io/en/latest/architecture/core.html#pager
https://optee.readthedocs.io/en/latest/architecture/core.html#pager
https://doi.org/10.1145/2461446.2461457
https://doi.org/10.1109/ISORC61049.2024.10551349
https://doi.org/10.1109/SP46214.2022.9833604
https://doi.org/10.1109/RTSS62706.2024.00042
https://doi.org/10.1109/TC.2006.110
https://doi.org/10.1109/RTCSA.2010.40
https://doi.org/10.1007/s11241-010-9113-6
https://doi.org/10.1109/RTAS.2016.7461362

	1 Introduction
	2 Some Real-Time Scheduling Background
	2.1 The Sporadic Task Model BMR90
	2.2 Limited-Preemption Scheduling

	3 The Corrected Limited-Preemption EDF Schedulability Condition
	3.1 The Problem
	3.2 The Correction

	4 Systems of Multi-Phase Secure (MPS) Sporadic Tasks
	4.1 Task Model
	4.2 Overview of Approach
	4.3 The Schedulability Test

	5 Systems of Conditional MPS Sporadic Tasks
	5.1 Model
	5.2 A Subtlety

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Schedulability Analysis Results
	6.3 Runtime Performance

	7 Related Work
	8 Conclusions

