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Abstract—Hardware performance counters (HPCs) on CPUs
are essential for tracking program and system behavior by
recording microarchitectural events. A major challenge is that,
even on modern platforms, the number of available HPCs is
limited compared to the events of interest. Existing software tools
mitigate this by multiplexing events in a round-robin fashion;
however, this approach may introduce significant errors. In
a recently-published paper at OSDI, we introduced Tintin, a
new HPC profiling infrastructure that mitigates multiplexing
errors by characterizing event count uncertainty at runtime and
scheduling events on counters to minimize it. This paper provides
details on Tintin’s elastic model for HPC scheduling that were
omitted from the original paper, including a new method for
interpolating multiplexed event counts, evaluation of Welford’s
method for online variance updates, an elastic scheduling policy
to minimize predictive uncertainty, and handling of overlapping
profiling scopes (e.g., core-level and process-level event moni-
toring). We also provide a roadmap for using Tintin with the
RT-Bench framework for real-time systems benchmarking.

Index Terms—hardware performance counters, measurement
uncertainty, elastic scheduling

I. INTRODUCTION

Hardware performance counters (HPCs), which are widely
available on modern server, desktop, and embedded CPUs,
provide essential tracking of program and system behavior.
HPC data are valuable across a wide range of application
domains, including debugging [1]–[4], workload optimiza-
tion [5]–[7], power analysis [8]–[10], diagnostics [7], online
resource provisioning [11]–[15], and intrusion detection [16],
[17]. Often, HPC data are used to make predictions about
program performance to inform decisions. For each use case,
it is important to model how target metrics or behaviors of
interest depend on hardware event counts.
Brokering HPC Access. HPCs are typically made available
to system software via a per-core performance monitoring
unit (PMU). The PMU provides an interface to program each
HPC to monitor a particular microarchitectural event (e.g.,
cache loads or misses). Effective PMU usage presents a major
challenge even on modern platforms: the number of available
HPCs is limited (often 2–6 per PMU) versus how many
types of events they can monitor (dozens to several hundred).
Towards managing this tension, event profiling tools such as
Linux Perf [18] broker access to HPCs. In much the same way
that threads and address spaces virtualize the limited physical
CPU and memory resources on a system, these tools provide
an abstraction layer over the PMU and its limited HPCs.

However, problems arise when using existing event profiling
tools to broker HPC access. First, those that mitigate the chal-

lenge of limited HPC availability do so via event multiplexing,
monitoring events in a time-shared round-robin manner, where
each event typically receives an equal portion of time. This
implies that events will remain unmonitored for some time;
observed counts are typically interpolated over these intervals,
which may introduce significant errors. Second, event profiling
may be requested from multiple overlapping scopes. For
example, a running process could profile its own hardware
events while event counts are simultaneously collected for
the processor core it’s on. Profiling tools typically treat these
scopes independently, which may exacerbate the effects of
multiplexing, especially when they share events in common.
Moreover, in some cases, scope conflicts can give rise to
starvation scenarios where an event is never monitored.

Tintin. In a recent OSDI paper [19], we presented Tintin, a
new hardware event profiling infrastructure that addresses the
aforementioned challenges while providing flexible specifica-
tion of event profiling scopes with fine granularity. Of primary
relevance to this paper, Tintin characterizes multiplexing errors
as uncertainty, which it dynamically tracks during runtime. We
demonstrated that the problem of scheduling events on HPCs
to minimize overall uncertainty reduces to elastic scheduling,
then implemented our algorithm from [20] to allocate HPC
time in the Linux kernel. Moreover, since multiplexing-based
errors cannot be fully eliminated, Tintin also reports uncer-
tainty via user-space interfaces; applications may use these to
enhance their predictive models or rule-based decision logic.

Contributions. A few details were omitted from [19] due to
space constraints. First, Tintin implements a custom method
for interpolation over multiplexed event counts to address a
problem with the original Trapzeoid Area Method proposed
in [21]. Tintin’s approach is derived and shown to be correct
in §III-A. Second, Tintin uses Welford’s method [22] to
track observed variance in event rates without storing past
observations, which improves efficiency in both time and
memory. In §III-B, we provide additional implementation
details of Tintin’s weighted version of Welford’s method;
this is evaluated in the Linux kernel against a traditional
variance computation in §VI-B. Third, although we’ve already
presented Tintin’s elastic hardware event scheduler in [19],
supplementary details relating input uncertainty to predictive
uncertainty are added in §IV-A. Finally, Tintin handles joint
scheduling of events from multiple profiling scopes; a previ-
ously omitted derivation of its policy is found in §IV-B.

Of particular relevance to the real-time operating systems
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Fig. 1. The Linux perf event subsystem multiplexes events on limited HPCs.
It is not aware of scope overlap; joint scheduling and common attribution
remain unsupported. If a per-core event is pinned to an HPC, per-task events
may be rejected, leading to measurement starvation.

community in general, and this year’s OSPERT workshop
in particular, we provide a roadmap for using Tintin with
the RT-Bench [23] open-source framework which integrates
existing benchmarks into a recurrent real-time task model. A
presentation of its latest updates also appears at this year’s
OSPERT [24]. RT-Bench uses Linux perf event to sample
hardware events during benchmark execution. in §V, we
illustrate the minor code changes necessary to allow RT-Bench
to use Tintin’s elastic scheduling and uncertainty reporting to
enable monitoring of more events than available HPCs with
minimal losses in accuracy.

For completeness, §VI-A summarizes experimental results
from [19] comparing Tintin to the Linux perf event subsystem.

II. BACKGROUND

A. Hardware Performance Monitoring

Hardware Performance Counters. Modern processors make
hardware event profiling available to system software via a
per-core performance monitoring unit (PMU), which provides
a set of programmable hardware performance counters (HPCs)
that can be configured individually to measure a specific
type of microarchitectural event, e.g., cache or bus accesses,
cache writebacks or refills, branch misprediction, etc. When
enabled, an HPC increments whenever its programmed event
occurs. The number of measurable events is substantial, typi-
cally exceeding several dozen on ARM processors (e.g., 58
on the Cortex-A53 [25] and 151 on the Cortex-A78 [26])
and over one thousand on Intel processors (e.g., 1,623 on
HaswellX [27]). However, the number of available HPCs is
very limited; most processors provide only 2-6 per physical
core [27], [28], and this number is effectively halved per log-
ical core when enabling Simultaneous Multithreading (SMT).

The Linux perf event Subsystem. This is Linux’s kernel-
level abstraction layer for interacting with HPCs. It serves as
the de facto infrastructure widely utilized by many tools such
as PAPI [29], Intel EMON [30], VTune [31], pmu-tools [32],
and the Linux Perf utility [28]. It provides access to hardware-
level HPC data and software-level data (e.g., memory footprint
and tracepoints). The former is the exclusive focus of Tintin.

Scheduling Events on Limited HPCs. Existing work has
sought to select relevant events carefully for a given applica-
tion. However, the number of events of interest often remains
larger than the available HPCs. For example, in [33], the 120
events available on an ARMv7-A CPU were narrowed to only
34 of importance for predictive DVFS. CounterMiner [34], an
offline analysis tool for predictive modeling with event counts,
achieves the most accurate IPC predictions for HiBench [35]
workloads using ∼150 events. Furthermore, some applications
profile derived metrics, such as Memory Bound [5]. These
combine as many as 16 individual events [36]. Pond [14],
which we evaluated as a case study for Tintin in [19], provides
a memory pooling model for cloud infrastructure. Its latency-
prediction model takes 7 derived metrics as inputs, spanning
20 events on Intel Skylake.

The current approach to managing this limitation is through
event multiplexing. When an HPC is configured to count a
particular event, we say that the event is scheduled on the
counter. If the number of events to be monitored exceeds the
number of available HPCs, they must time-share the counters;
perf event schedules events for monitoring in round-robin
fashion [21], [27], [37], [38]. Fig. 1 presents an illustrative
example in which there are 4 available HPCs, while Process
#1 requires monitoring for 8 events. In this scenario, the events
{e1, e2, e3, e4} are scheduled in the initial time slice, followed
by events {e2, e3, e4, e5}. HPC measurements for each event
can then be interpolated to estimate the total count, but this
unavoidably introduces errors. For example, we found that the
standard deviation for hardware event counts generated by the
541.leela r Go engine in the SPEC CPU®2017 benchmark
suite [39] as reported by Linux Perf increased by over 6×
when profiling 8 events compared to 4 [19].

Profiling Scope. The perf event subsystem enables specifica-
tion of hardware event monitoring for either individual tasks
(processes/threads) or CPU cores. Upon CPU task scheduling,
it first schedules events bound to the current core before
adding those associated with the active process. Since events
are bound to per-core and per-task data structures, they are
managed independently, even if they share common events of
interest. The right side of Fig. 1 illustrates this scenario: a
user assigns two events, {e4, e5}, to the current core; these
are placed on HPCs #2 and #3. Consequently, events {e4, e5}
monitored for Process #1 are not scheduled, even though they
represent the same event types, resulting in starvation.

B. Tintin

Tintin, a hardware event monitoring infrastructure intro-
duced in our recently-published paper at OSDI [19], aims to
solve these limitations via the three components in Fig. 2.

Quantification of Multiplexing Errors. Multiplexing errors
can be quantified at runtime based on variance in observed
event rates. The Tintin-Monitor component tracks variance,
then reports expected error back to user-space applications
alongside the measured counts, helping to better inform
profiling-based decision-making. Details on Tintin-Monitor’s
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Fig. 2. Tintin design overview.

rate-based count interpolation and variance tracking which
were omitted from [19] are provided in §III.

Scheduling to Minimize Uncertainty. By allocating more
HPC time to events with larger variance, overall error is
minimized. The Tintin-Scheduler component uses the errors
reported by Tintin-Monitor to schedule events on HPCs,
assigning each event a unique share of time with the objective
of minimizing overall error. This problem is shown to be
semantically equivalent to elastic scheduling. §IV-A provides
deeper insights into this connection than were given in [19].

Indirection to Handle Profiling Scopes. An additional level
of indirection can provide a uniform mechanism to handle the
heterogeneity of profiling requirements. Tintin provides ab-
stractions to handle issues related to profiling scope, including
a uniform API that enables greater flexibility and granularity
in specification via the Tintin-Manager component. It elevates
a profiling scope to a first-class object, an Event Profiling Con-
text (ePX). Tintin-Manager manages ePXs collectively for all
applications, enabling overlapping events from concurrently-
active scopes to be scheduled jointly. Details on how joint
scheduling is handled within the elastic model, which were
only mentioned cursorily in [19], are provided in §IV-B.

III. COUNT AND UNCERTAINTY ESTIMATION

Formally, an event ei ∼ (xi, σi) has an estimated count xi

and uncertainty σi due to interpolation over multiplexed obser-
vations. In this section, we describe the design rationale behind
Tintin’s interpolation and uncertainty tracking mechanisms.

A. Interpolation with the Trapezoid Area Method

To derive the estimated total count xi from a measured count
x′
i, many tools (e.g., Linux Perf) use count-based interpolation:

xi = x′
i/Ui, where Ui is the fraction of time that event type ei

was scheduled on a counter. Several alternative methodologies
are explored in [21], [40], [41]. Besides those that avoid
multiplexing via multiple program runs and offline analysis,
the trapezoid area method (TAM) —which uses rate-based
interpolation— is suggested to be the most accurate [21].

Formally, an event ei is measured with count xj
i over some

continuous time interval Iji = [aji , b
j
i ] of duration δji . Then its

average rate rji over this interval is xj
i/δ

j
i . Over consecutive

intervals, TAM’s original implementation [40] assumes that

a1 b1 a2 b2 a1 b1 a2 b2

r2r2
r1 r1

Orignal TAM Tintin

Fig. 3. Tintin’s TAM implementation.

the arrival rate follows the straight line connecting the points
(bji , r

j
i ),(b

j+1
i , rj+1

i ), and interpolates the count using the area
of the resulting trapezoid, as illustrated in Fig. 3. However,
this violates the following proposed invariant:

If an event ei is always monitored, the produced event
count estimate x′

i should equal the observed count xi.
Tintin-Monitor instead constructs the trapezoid so that its

top passes through the midpoint ((bj+1
i + aj+1

i )/2, rj+1
i ) of

the second measured interval. This is derived as follows.
For event ei, we assume a constant change in the rate

of event arrival from interval I1 to I2. This is the line
r(t) = mt+ c connecting the center of each interval at points:(

a1 + b1
2

, r1

)
and

(
a2 + b2

2
, r2

)
Solving for the slope:

m =
r2 − r1

a2+b2
2 − a1+b1

2

=
2(r2 − r1)

a2 + b2 − a1 − b1

Then solving for the intercept c:

r1 =
(r2 − r1)(a1 + b1)

a2 + b2 − a1 − b1
+ c

The formula can then be expressed as:

r(t) =
2(r2 − r1)

a2 + b2 − a1 − b1
t+ r1 −

(r2 − r1)(a1 + b1)

a2 + b2 − a1 − b1

After measuring event ei during interval I2, we interpolate
over the unmonitored time to estimate the total event arrival
count ∆xi since the end of I1 by integrating from b1 to b2:

∆xi = 0.5 · (r(b1) + r(b2)) · (b2 − b1)

This equals:

∆xi =

(
(r2 − r1)(b1 + b2)

a2 + b2 − a1 − b1
+ r1 −

(r2 − r1)(a1 + b1)

a2 + b2 − a1 − b1

)
· (b2 − b1)

=
(b1 − b2)(r1(a2 − b1) + r2(b2 − a1))

a1 − a2 + b1 − b2

Invariance can be proven because, if b1 = a2 then we have:

∆xi =
(a2 − b2)(r1(a2 − a2) + r2(b2 − a1))

a1 − a2 + a2 − b2

∆xi =
(a2 − b2)(r2)(b2 − a1)

a1 − b2
= r2(b2 − a2)

Which is precisely the count in interval I2.



B. Tracking Variance with Welford’s Method

As described in [19], for an event ei with interpolated count
xi, we define uncertainty as the expected error σi in the count.
The instantaneous rate of event arrival is a random variable ri,
with a mean rate rji obtained during each measurement interval
Iji . Since it is infeasible to measure instantaneous rates, Tintin-
Monitor instead characterizes expected variance E(V (ri)) by
taking the variance of the sample means, weighted by duration.
In many stochastic processes, variance scales linearly with
time [42]; since we are measuring variance in rate, it therefore
follows that the expected variance V (xi, t) in event count xi

over the time t that the event is not monitored can be expressed
as V (xi, t) = V (ri) · t2. Then the expected error σi in the
estimated event count is the standard deviation

√
V (xi, t).

As noted in [19], to update the observed variance in sample
means efficiently during online profiling, Tintin-Monitor uses
a weighted version of Welford’s method [22]. Unlike standard
variance calculations, this only requires one pass through the
data, obviating the need for Tintin to store all sampled data.
At the end of monitoring intervals Iji , variance is updated as

Vi = Vi−1 × (r − µi)× (r − µi−1) (1)

where µ is the time-weighted mean over collected counts.
To avoid involving floating-point operations in the involved
division steps, we apply a scaling factor, where necessary, to
the numerator then perform integer division to achieve a fixed-
precision result. To prevent overflow, we use 64-bit integers
and hand-tune the order of operations to avoid large values.

Because Welford’s method is a one-pass technique, as new
measurements are obtained, variance is updated in constant
time. §VI-B shows an empirical comparison of the kernel
overhead imposed by Welford’s method, versus a traditional
two-pass variance calculation.

IV. ELASTIC SCHEDULING TO MINIMIZE UNCERTAINTY

A. Hardware Event Scheduling

Tintin-Scheduler aims to adjust allocations of time for
events on limited HPCs to minimize overall uncertainty.
Scheduling Model. Formally, for a profiling scope, we define
E = {ei}, the set of events to be monitored, where |E| = n.
Similarly, C = {cj} denotes the set of HPCs available to
monitor them, where |C| = m. The problem is to determine a
schedule S(t) : C → {E, ϕ} that defines, at each time t, the
event assigned to each counter. We define an event’s utilization
Ui as the fraction of time it occupies a counter.
Scheduling Policy. Many applications use HPC data as inputs
to statistical or learning-based models that predict program
performance to inform decisions. For example, Pond [14] is a
Microsoft Azure resource orchestration system. In cloud en-
vironments, memory pooling may improve DRAM utilization
and reduce cost, but using pooled instead of local memory
substantially increases the latency of some virtual machine
workloads. To allocate limited local memory appropriately,
Pond uses hardware event data to predict whether a VM
workload’s latency will be sensitive to pooled memory use.

Uncertainty in input values induces uncertainty in output
predictions. Tintin-Scheduler is designed primarily to schedule
events on HPCs so as to minimize output uncertainty in pre-
diction, although it works in general to minimize overall event
count uncertainty when no single predicted metric is targeted.
Tintin-Miner, an offline analysis tool for which development
is currently a work in progress, uses model-agnostic variance-
based sensitivity analysis to gauge the impact of each input
event on output fidelity. Specifically, Tintin-Miner employs
Sobol’s indices [43], which measure the contribution of each
input variable to the output variance. By changing the counts
of an individual event ei and then measuring the variance
of output, it calculates the event’s first-order sensitivity index
S1
i , which represents the percentage of model output variance

contributed individually by that event as an input to the model
(i.e., the effect of changing the count xi only).

To minimize predictive uncertainty, we therefore want to
minimize the total variance, weighted by sensitivity, of the
inputs. From §III-B, the expected error σi in the estimated
count of event ei is

√
V (ri) · t, where t is the amount of

unmonitored time. Future unmonitored time for event ei is
thus proportional to 1− Ui, where Ui is its utilization; thus, we
express the expected error as σi =

(√
V (rk)

)
·(1−Ui). Vari-

ance is thus σ2
i = V (ri) · (1− Ui)

2. The scheduling problem
is therefore stated as the following constrained optimization:

min
Ui

n∑
i=1

wiV (ri) · (1− Ui)
2 (2a)

s.t.
n∑

i=1

Ui ≤ m and ∀i, Umin ≤ Ui ≤ 1 (2b)

Where Umin is a lower-bound on the scheduling quantum
(minimum schedulable utilization time slice) to avoid event
starvation or floods of timer interrupts. For generality, we use
wi to denote a weight assigned to event ei; from our sensitivity
model described above, this may be set equal to Sobol’s first-
order sensitivity index S1

i . In general, if lacking sensitivity
analysis, Tintin assigns wi =

w∗
i

x2
i

, where w∗
i is a user-specified

weight (set via Tintin’s syscall API) and xi normalizes the
standard deviation by the estimated event count.

Eqn. 2 is equivalent to the formulation in [44] of elastic
scheduling as a constrained optimization problem. The elastic
real-time model, proposed by Buttazzo et al. [45], [46],
adapts task utilizations to avoid overload on limited processor
resources. Here, we solve the similar problem of adapting the
scheduling utilizations of hardware events on limited HPCs.
Tintin-Scheduler uses our quasilinear-time elastic scheduling
algorithm from [20], [47] to assign utilizations. In §VI-A, we
show that Tintin’s dynamic variance-weighted elastic schedul-
ing policy improves the accuracy of its event count estimates,
even in the absence of sensitivity data.

B. Scheduling Multiple Scopes
As mentioned in §II-B, Tintin collectively schedules all

events from any active EPXs. The details were omitted from
our accepted OSDI paper [19]; we outline the approach here.



Scheduling Model. The problem remains to determine a
schedule S(t) : C → {E, ϕ} that defines, at each time t, the
event assigned to each counter. The complication now is that
multiple active EPXs may share events in common. For ex-
ample, the system might be monitoring events {e1, e2, e3, e4}
on core 0, while a task running on that core monitors events
{e1, e2, e5, e6}. It does not make sense to treat e1 and e2
separately for each profiling scope for purposes of attribution:
if counts are read for either event, they should be attributed to
both EPXs. Otherwise, unmonitored time becomes unnecessar-
ily inflated, contributing additional uncertainty. However, each
EPX independently tracks counts and variance for its events,
which raises questions about how these should be used as
inputs to the scheduling problem.

We denote event e∗i,j ∼ (xi,j , σi,j , wi,j , ei,j) as the ith

event associated with the jth EPX. As usual, x and σ are the
estimated counts and error; w denotes its weight (see §IV-A)
and e denotes the identifier of the hardware event, implying
that ea,j , eb,j should be unique within a single EPX, but ea,j
and eb,k might be the same, indicating common events among
EPXs. Each EPX is also assigned a weight zj . This defaults
to 1, but is user-settable via Tintin-Manager’s syscall API.
Scheduling Policy. Our objective now is to minimize total
weighted uncertainty among the predictive models underpin-
ning each EPX. By extension of Eqn. 2, this can be stated as:

min
Uk

n∑
i=1

m∑
j=1

zi,jwi,jσ
2
i,j · (1− Uk)

2 (3a)

s.t.
∑
Uk

≤ m and ∀k, Umin ≤ Uk ≤ 1 (3b)

where we assume there are m active EPXs, and we denote
the utilization of event ei,j as Uk to reflect that there may be
events in common. We may instead denote the collection of
monitored events {ek}, where each event is assigned a set of
values {zk,j}, {wk,j}, {σk,j} according to the EPXs that track
it. If an event is not tracked by some EPX, these values may
be set to 0. We can then re-state the optimization problem:

min
Uk

∑
ek

 m∑
j=1

zk,jwk,jσ
2
k,j

 · (1− Uk)
2 (4a)

s.t.
∑
Uk

≤ m and ∀k, Umin ≤ Uk ≤ 1 (4b)

Notice that this is exactly the quadratic optimization prob-
lem in Eqn. 2, but with coefficients

(∑m
j=1 zk,jwk,jσ

2
k,j

)
for each event ek. It therefore can be solved using the same
algorithm with transformed inputs.

V. RT-BENCH INTEGRATION

RT-Bench [23] is an open-source tool to address the bench-
marking needs of real-time systems. Rather than providing its
own computational workloads, RT-Bench serves as a frame-
work in which existing benchmarks, such as Isolbench [48] or
SD-VBS [49], can be integrated. RT-Bench provides a wrapper

- read(fd, &measurement, sizeof(struct read_format));       
+ read(fd, &measurement, sizeof(struct tintin_read_format));

long unsigned value = measurement.value;
+ long unsigned uncertainty = measurement.uncertainty;      

-  int fd = syscall(__NR_perf_event_open, &attr, …);           
+  int fd = syscall(__NR_tintin_event_open, &attr, …);         

Fig. 4. Simplified code snippets for using Tintin instead of Linux perf event
in RT-Bench. Both changes are made to files in generator/src. (Top): Set
up monitoring in performance_counters.c. (Bottom): Retrieve count
and uncertainty measurements in performance_sampler.c.

to run benchmark workloads as periodic tasks using a specified
period and deadline under Linux’s real-time schedulers. It sup-
ports processor pinning and constraints on memory allocation.

RT-Bench reports performance statistics from the running
benchmarks, including several hardware event counts. When
initializing a benchmark workload, it establishes monitoring
via Linux perf event. It then launches a dedicated performance
monitoring thread, PMThread, to perform high-frequency HPC
sampling via returned file descriptors. In its original release,
RT-Bench only monitored L2 cache refills [23], but it has since
been updated to monitor L1 and L2 references and refills,
retired instructions, and CPU cycles. These, and other updates,
are also presented at this year’s OSPERT [24].

In its current version, RT-Bench does not monitor more
events than the number of HPCs, and it assigns all events to the
same group, guaranteeing simultaneous monitoring. However,
as stated in [23], RT-Bench may benefit from adding more
performance counters. Indeed, access patterns to other shared
hardware resources, such as the L3 cache, memory bus [50],
and TLB [51], may cause significant contention and delays in
real-time task execution [52]–[55].

With its ability to significantly reduce measurement errors
due to HPC multiplexing, Tintin is a suitable candidate for use
in RT-Bench instead of perf event. Moreover, Tintin can report
both event counts and variance-based uncertainty in those
counts. If greater confidence is desired, an RT-Bench user can
make an informed decision to rerun a benchmark, either as-
signing greater weight to selected events for elastic scheduling
(the wi values in Eqn. 2a), or running the benchmark multiple
times, each time profiling different subsets of the events of
interest. Integrating Tintin into RT-Bench is straightforward,
requiring the minimal code changes shown in Fig. 4.

VI. EVALUATION

A. Overview of Prior Results

Here, we summarize a few of the key results from our OSDI
paper on Tintin’s performance [19].

Accuracy and Overhead. We used the SPEC CPU®2017 [39]
and PARSEC 3.0 [56] benchmark suites to assess the accuracy
of the event counts collected online by Tintin, as well as
its runtime overhead, in comparison to Linux perf event. We
select the 24 default predefined events in Linux perf event to
profile simultaneously [57]. To measure event count accuracy,
we obtain ground truth by pinning one event to an HPC in
each run. We repeat the experiments for the first 5 predefined
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events in PERF_TYPE_HARDWARE in [57]. Runtime over-
heads are obtained by measuring mean benchmark execution
times across 10 runs; these are normalized to the execution
times without profiling. Results are shown in Fig. 5.

Event counts obtained with Linux perf event were, on
average, 9.01% off from the ground truth, with a maximum
error of 53.27%. In comparison, Tintin’s errors remained well
under 5% in most cases, with an average of 2.91%. Tintin
exhibits an average overhead of only 2.4%, only slightly higher
than perf event’s 1.9%. In the worst-case, we observed Tintin’s
overhead reached up to 7.6% while perf event’s reached up
to 12.7%. Tintin’s achieves better execution time performance
in scenarios where elastic scheduling allows fewer interrupts.

Impact of Quantifying Uncertainty. Many applications use
HPC data to make predictions, e.g., to identify malicious
behavior in intrusion detection systems. To evaluate Tintin’s
ability to enhance such systems, we adopted the experimental
setup from [17] on detecting Linux rootkits. As malware, we
use the open-source rootkit Diamorphine [58]. We train a
random forest classifier (as in [17], [59]) on the events defined
under PERF_TYPE_HARDWARE. We compare its accuracy
when collecting event counts using (i) perf event; (ii) Tintin
with just elastic scheduling, weighting each event equally; and
(iii) additionally using the measurement uncertainty reported
by Tintin as additional inputs to the classifier. Fig. 6 presents
the resulting ROC curves. The area under the curve (AUC)
for perf event is 0.57. Tintin improves the AUC to 0.66 with
elastic scheduling, and to 0.70 with reported uncertainty.

B. Benefits of Welford’s Method

To highlight the benefit of using Welford’s method over a
traditional two-pass variance calculation, we profile the in-
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Fig. 7. Comparison of overheads induced by variance computation.

kernel execution time of updating the running variance for an
event. For direct comparison, we implement a Linux kernel
module that simulates HPC reads and run it on a Raspberry
Pi 3 Model B+. Counts and monitoring interval durations are
written into an array for use by traditional weighted variance,
and we use Tintin-Monitor’s update variance function to
update the running variance attached to an ePX with Welford’s
method. Overheads, in processor cycles, are measured for
each approach every time a sample is obtained. Results are
shown in Fig. 7; unsurprisingly, the standard two-pass variance
computation times grow linearly with the number of number of
samples (about 69 cycles per sample), while Welford’s method
remains relatively constant (150 cycles on average). We note
that the initial larger overheads for the first few samples are
likely due to cache effects.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents Tintin [19], a new hardware event
profiling infrastructure originally published at OSDI, to the
real-time systems community. Tintin aims to schedule events
to reduce errors due to multiplexing atop limited HPCs. Tintin
is a general-purpose, Linux-based tool. Although it does not
specifically target real-time systems, hardware profiling is
nonetheless important to our community, as evidenced by the
PMThread functionality in RT-Bench [23], [24]. Moreover,
Tintin leverages the elastic scheduling model of Buttazzo et
al. [45], [46] to minimize measurement uncertainty.

As future work, we intend to release Tintin-Miner, an offline
analysis tool that will identify relationships among events so as
to identify and remove redundant events from the monitoring
pool. It will also perform the sensitivity analysis described
in §IV-A to inform weights for Tintin-Scheduler. We will also
extend the elastic scheduling policy with principled support for
event groups and CPU platforms where certain HPC registers
cannot accommodate certain event types.
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