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Abstract—Elastic scheduling is a framework to reduce task
utilizations (often by increasing periods) in response to system
overload. This paper extends elastic scheduling to uniproces-
sor scheduling of implicit-deadline task sets for which periods
must remain harmonic. We argue that for tasks with periods
constrained to continuous intervals, the problem of selecting
harmonic periods from those intervals is unlikely to have a
polynomial time solution. However, we outline an approach that is
pseudo-polynomial in the range of acceptable periods. We then
show that the problem of elastic scheduling is NP-hard with
harmonic constraints. Nonetheless, if a total order is imposed on
task periods (a natural restriction in many applications with
execution pipelines that synchronize input data sources), the
problem can be reduced offline to a lookup table, enabling
polynomial-time online adaptation if available CPU bandwidth
changes. We implement the proposed algorithm in two real-world
applications: the Fast Integrated Mobility Spectrometer (FIMS)
and ORB-SLAM3. We demonstrate that elastic scheduling allows
FIMS to adjust its execution to avoid missing deadlines on a
SWaP-constrained computational platform, and that it improves
ORB-SLAM3’s localization results by as much as 10.4× when
available CPU bandwidth changes dynamically during runtime.

Index Terms—real-time systems, elastic scheduling, harmonic
tasks, period assignment, harmonic periods, period ranges

I. INTRODUCTION

Elastic real-time scheduling models provide a framework
for dynamic adaptation of task utilizations in response to
system overload. The model originally proposed in [1], [2]
by Buttazzo et al. was formulated for uniprocessor scheduling
of implicit-deadline tasks. Each task is assigned a continuous
interval from which its period may be selected, as well as
an elasticity parameter that “specifies the flexibility of the
task to vary its utilization” [1]. If schedulable, each task
executes at its minimum allowed period; otherwise, each
task’s utilization is “compressed” proportionally to its elastic
constant by increasing its period until the total utilization no
longer exceeds the schedulable bound of the system (or until
the task’s period would exceed its assigned interval).

This paper is the first to extend the elastic scheduling
model to task systems for which periods are additionally
constrained to be harmonic. Many control systems, such as
those found in robotics applications [3] and real-time hybrid
structural simulation [4], demand harmonic rates among their
constituent tasks. In applications that capture and process
frames from multiple sensing devices to be synchronized in
backend processing tasks, such as simultaneous localization
and mapping (SLAM) [5] and real-time mobile spectrome-
try [6], harmonic task periods guarantee consistent temporal

alignment [7]. Furthermore, task sets with harmonic periods
have hyperperiods equal to the largest period [8], [9], which
reduces scheduling table sizes in time triggered systems [10]
and constrains the test set in processor demand analysis [11].

Selecting harmonic periods from within acceptable intervals
is nontrivial. Nasri et al. [12] formalized the problem, and
proposed an approach to solve it in time linear in the number
of tasks for restricted cases. In general, though, the algorithm’s
running time “can exponentially grow.” In [13], Nasri and
Fohler identified another restriction of the problem that can
be solved in polynomial time, but they provide “no guarantee
for reasonable computational complexity” in general.

In this work, we reason about the problem of assigning task
periods from continuous intervals such that (i) the objective
function defined for elastic scheduling by Chantem et al. in
[14], [15] is minimized, (ii) periods remain harmonic, and (iii)
schedulability is guaranteed. We call this the harmonic elastic
problem. This paper makes the following contributions:
Complexity Results: In §IV, we show that for n tasks and a
parameter k bounding the ratio of the task periods, finding a
harmonic period assignment (if one exists within the allowed
intervals) is unlikely to be solvable in time polynomial in n
and log k, but that there exists a pseudo-polynomial algorithm
to do so in general. We also prove that the harmonic elastic
problem on a uniprocessor is NP-hard even for fixed k.
The Ordered Harmonic Elastic Problem: In §V, we propose a
two-part algorithm to find an optimal solution to the harmonic
elastic problem with an a priori order imposed over task
periods. This is a natural restriction in many systems, such
as multi-time-stepping decomposition of a real-time hybrid
simulation (RTHS) [16] for natural hazards engineering, and
applications such as ORB-SLAM [17] where frontend data
collection tasks capture and process frames from sensing
devices which must be aggregated downstream. Our algorithm
searches offline for all projected harmonic intervals (PHIs)
that can be constructed within the allowed period intervals,
constructing a lookup table that identifies the optimal PHI for
each possible utilization bound.1 Despite being exponential
in log k, we demonstrate that in practice this algorithm is
feasible for reasonable values of n and k and the lookup table
remains small. During online execution, if available utilization

1Intuitively, for a given sequence of harmonic multipliers, the corresponding
PHI describes the largest continuous range such that if the first task in
period order is assigned a period from that range, all periods assigned as
corresponding integer multiples remain within the allowed intervals for each
task. We define PHI more formally in Definition 4 of §V.



changes (e.g., due to interference from background processes,
or the arrival of aperiodic workloads), binary search allows
polynomial-time reassignment of task periods.

Real-World Applications: We apply this approach to two real-
world applications: the Fast Integrated Mobility Spectrometer
(FIMS) [6] and the ORB-SLAM3 [18] simultaneous localiza-
tion and mapping system. FIMS, described in §VI-B, performs
real-time atmospheric aerosol monitoring, aggregating and
synchronizing harmonic inputs in a backend matrix inversion
task that translates detected particle coordinates into a particle
size distribution. Towards future deployment onboard a small
UAV, we run FIMS on a single core of the Raspberry Pi
4, using our harmonic elastic scheduling model to prevent
overload. We find that, by adjusting task periods, we can
guarantee temporal alignment and avoid deadline misses, even
when FIMS is limited to consuming only a fraction of that
core’s bandwidth. In ORB-SLAM3, dataflow and synchroniza-
tion requirements impose a harmonic total ordering over the
task periods. When computational resources are insufficient
to guarantee completion of all tasks, frames may be dropped
or desynchronized, giving increasingly erroneous results [19].
Our harmonic elastic scheduling model allows it to adjust task
periods in response to changes in available CPU bandwidth
when executing concurrently with other tasks on a single
core, achieving a 10.4× reduction in relative translational error
(RTE) using this approach compared to its baseline execution.

II. BACKGROUND AND SYSTEM MODEL

Elastic Scheduling: The elastic recurrent real-time workload
model [1], [2] provides a framework for managing over-
load without suspending tasks or dropping jobs by reducing
(“compressing”) individual tasks’ utilizations until the total
utilization no longer exceeds the schedulable bound. Each
task’s utilization is likened to a spring whose elasticity reflects
the task’s ability to adapt its utilization to a lower quality
of service. If the total length of the springs, placed end
to end, exceeds some desired length (the utilization bound),
a compressive force is applied to the system. Each spring
(and corresponding utilization) is compressed proportionally
to its elasticity until the total utilization no longer exceeds
the bound, or until the individual task reaches its minimum
serviceable utilization, by extending individual task periods.

More formally, the elastic model for implicit-deadline
tasks on a uniprocessor [1], [2] characterizes each task
τi=(Ci, T

min
i , Tmax

i , Ti, Ei) by five non-negative parameters:
Ci (the task’s worst-case execution time); Tmin

i (the task’s
minimum period, i.e., its nominal value when executing at the
desired rate in an uncompressed state); Tmax

i (its maximum
period, beyond which correct behavior is not maintained);
Ti (the task’s assigned period, Tmin

i ≤ Ti ≤ Tmax
i ); and Ei

(a constant representing “the flexibility of the task to vary
its utilization” [1]). From these parameters, corresponding
values Ui=Ci/Ti, Umin

i =Ci/T
max
i , and Umax

i =Ci/T
min
i can

be derived. A task system Γ = {τ1, . . . , τn} has a desired
utilization UD representing the utilization bound given by the

scheduling algorithm in use. If the system is overloaded, the
elastic model assigns a period Ti to each task τi by reducing
its utilization from Umax

i in proportion to its elasticity Ei until
either (i) the total utilization no longer exceeds UD, or (ii) the
task’s period reaches Tmax

i . In [20], Sudvarg et al. presented an
algorithm to achieve this in quasilinear time over the number
of tasks, or in linear time for admission of a new task.

The elastic model has been extended to multiprocessor
scheduling of sequential, implicit-deadline tasks [21] and to
EDF [22] and fixed priority [23] scheduling of constrained-
deadline tasks. However, some scheduling models impose
constraints where proportional compression no longer makes
sense – e.g., under federated scheduling [24] where every
parallel task executes on dedicated cores, or (as in this
paper) when periods must remain harmonic. To allow further
generalization, Chantem et al. demonstrated in [14], [15] that
utilizations satisfying the elastic scheduling model could be
found by solving a constrained optimization problem:

min
Ui

n∑
i=1

1

Ei
(Umax

i − Ui)
2 (1a)

s.t.
∑
i

Ui ≤ UD and (1b)

∀i, Umin
i ≤ Ui ≤ Umax

i (1c)

(We refer to (1a) as the “elastic objective.”) By modifying
the schedulability constraint (1b), Orr et al. developed elastic
frameworks for federated scheduling of parallel tasks having
periods [25] and workloads [26] that may be adjusted con-
tinuously, or selected from discrete values [4]. In particular,
discrete utilizations may be constructed so as to guarantee
harmonic period assignments [4]. This approach, however,
does not allow task utilizations to be compressed over con-
tinuous ranges within the constraints of harmonicity; nor does
it address the question of how to select candidate harmonic
period values within a range that is acceptable for each task.
Harmonic Periods: Prior studies have considered using har-
monic periods to improve schedulability. It is well-known (see,
e.g., [27]) that rate monotonic (RM) preemptive scheduling
on a uniprocessor permits a utilization bound of 1 if tasks
are assigned harmonic periods. Han and Tyan presented a
schedulability test that takes advantage of this by mapping task
periods to smaller artificial harmonic values [28], borrowing
from an earlier algorithm presented by Han and Lin [29].
Shih et al. used this same algorithm to schedule radar dwells
[30]. Fan and Quan demonstrated a strategy to partition fixed-
priority tasks on a multiprocessor according to their harmonic
relationships [31]. Min-Allah et al. proposed a utilization
bound test for task sets with deadlines larger than periods that
constructs artificial harmonic deadlines [32]. In these studies,
however, tasks still execute at their originally-assigned periods.

Period assignment from sets of acceptable values has also
been studied in prior work. Kuo and Mok studied systems
where each task is assigned a discrete set of periods at which it
may execute, and for which execution times scale with periods
(utilizations remain constant) [27]. They considered assigning
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Fig. 1: Forward search for harmonic periods via projected harmonic
zones. Tasks τ1, τ2, and τ3 must take periods in the intervals
I1=[20, 25], I2=[43, 74], and I3=[45, 100]. Projected harmonic
zones from I1 to I2 are re-projected. Since these projections overlap
I3, harmonic periods can be assigned.

periods to tasks so that the number of subsets of tasks with
harmonic periods does not exceed some value h selected to
guarantee RM schedulability. For h = 1, this guarantees that
all periods are harmonic. Assigning periods to tasks from
continuous ranges so as to minimize the hyperperiod has
also been studied [8], [9]. While this approach will find an
assignment (if one exists) of periods to each task such that
the largest period is an integer multiple of the others, this
does not guarantee that all periods are harmonic.

However, many applications demand harmonic task rates for
functional correctness, not just to increase the schedulable uti-
lization bound. These include robotic control systems [3], [7],
real-time hybrid simulation [4], [16], [33], SLAM systems [5],
[17], [18] and mobile spectrometry [6]. To satisfy such re-
quirements, we consider the problem of assigning harmonic
periods to tasks from continuous intervals. We build off work
by Nasri et al. [12], who previously studied this problem and
first proposed a solution. In their model a continuous interval
Ii = [Tmin

i , Tmax
i ] is specified for each task τi from which

its period must be selected. Their approach orders intervals
according to Tmin

i , then searches for a sequence of “projected
harmonic zones” from the first interval to the last.

Definition 1 (Projected Harmonic Zone). (This is a restate-
ment of [12, Definition 1].) The projected harmonic zone
χa
I1→I2

: [Tmin
χ , Tmax

χ ] from interval I1 to I2, Tmin
1 ≤ Tmin

2 ,
with multiplier a ∈ N+ is a continuous range of numbers in
I1 that starts from Tmin

χ = max{Tmin
2 , a · Tmin

1 } and ends at
Tmax
χ = min{Tmax

2 , a · Tmax
1 }.

Fig. 1 illustrates the forward search technique proposed
in [12]. Also in [12], Nasri et al. show how to identify if all
harmonic zones projected onto a given interval fully overlap;
in the case where this is true for all intervals, the problem is
solved in linear time in the number of tasks. However, they
state that in general “the number of [projected harmonic zones]
can exponentially grow.” In [13], Nasri and Fohler propose a
backward search starting from the last interval. If all backward
projections are disjoint, the problem can be solved in time
O(n2 log n) for n tasks, but they provide “no guarantee for
reasonable computational complexity” in general. However, in
§IV-B, we present a general pseudo-polynomial algorithm to

assign harmonic periods from within the specified intervals.
In [34], Mohaqeqi, Nasri, et al. extend harmonic period as-

signment to various optimization problems. For example, they
demonstrate that assigning harmonic periods from continuous
intervals to minimize a weighted sum over the periods while
respecting schedulability is NP-hard. We show a similar result
in §IV-C for the elastic objective. In [35], Pavić and Džapo also
present algorithms and complexity results for the objectives
from [34], but with discrete constraints on periods.

III. PROBLEM STATEMENTS

In this work, we consider the following three problems:
The Harmonic Period Problem: Given a set Γ of n tasks,
where each task τi is characterized by a continuous interval
Ii = [Tmin

i , Tmax
i ], assign each task a period Ti such that for

all i, 1 ≤ i ≤ n, these conditions are satisfied: (i) Ti ∈ Ii, and
(ii) for any i, j, either Ti/Tj ∈ N+ or Tj/Ti ∈ N+.

This is the problem considered in [12] and [13], and
does not consider schedulability under the resulting set of
assignments. In §IV-A we argue that the problem is unlikely
to have a polynomial time solution in the number of tasks, but
in §IV-B, we present a pseudo-polynomial algorithm.
The Harmonic Elastic Problem: Given a set Γ of n
implicit-deadline elastic tasks on a uniprocessor, where each
task τi is characterized by five non-negative parameters
(Ci, T

min
i , Tmax

i , Ti, Ei) as described in §II, find an assign-
ment of periods Ti to each task τi satisfying the constrained
optimization problem in Eqn. 1, with the additional constraint:

∀i,j , Ti/Tj ∈ N+ or Tj/Ti ∈ N+ (2)

In §IV-C, we prove that this is NP-hard in general.
The Ordered Harmonic Elastic Problem: This problem is
equivalent to the harmonic elastic problem, but with the
additional restriction that task periods must be selected to
respect some total ordering assigned a priori. In other words,
∀i, j such that 1≤i<j≤n, it is required that Ti≤Tj . This is a
natural restriction in several applications, and in §V we show
that it allows for polynomial-time online period adjustment.

IV. COMPLEXITY RESULTS

A. Complexity of the Harmonic Period Problem

The decision version of the harmonic period problem asks:
Given a set Γ of n tasks where each task τi is characterized
by a continuous interval Ii = [Tmin

i , Tmax
i ], is it possible to

assign each task a period Ti such that for all i, 1 ≤ i ≤ n,
the following conditions are satisfied: (i) Ti ∈ Ii, and (ii) for
any i, j, either Ti/Tj ∈ N+ or Tj/Ti ∈ N+? We point out
that this decision problem is no harder than the problem of
actually finding the periods; hence, any lower bounds on the
computational complexity of this decision problem also holds
for the problem of finding the periods.

We now show, by reduction from integer factorization
(defined below), that it is unlikely that this decision problem
can be solved in time polynomial in n and log k, where k
bounds the ratio of the task periods.



Definition 2 (Integer Factorization).
INSTANCE: Positive integers N and ℓ, 1 < ℓ < N .
QUESTION: Does N have an integer factor in [2, ℓ]?

Integer factorization is widely believed to not be solvable by
polynomial-time algorithms (assuming P ̸= NP) [36]. The
following theorem builds upon this belief to show that we
are unlikely to be able to solve the decision version of the
harmonic period problem in polynomial time:

Theorem 1. If the decision version of the harmonic period
problem can be solved by a polynomial-time algorithm, then
integer factorization can as well.

Proof. We can reduce integer factorization to the decision
version of the harmonic period problem as follows. For any
instance (N, ℓ) of integer factorization, we construct a set of
three tasks Γ = {τ1, τ2, τ3} with period intervals as follows:

I1 = [1, 1] I2 = [2, ℓ] I3 = [N,N ]

Note that τ1’s period T1 must equal 1 and τ3’s period T3 must
equal N . The harmonicity constraint mandates that (i) τ2’s
period T2 be divisible by T1 ≡ 1, and hence an integer within
the interval [2, ℓ]; and (ii) this period T2 must be a divisor of
τ3’s period T3 ≡ N . Taken together, these facts imply that
the task system Γ constructed above is a YES instance for the
decision version of the harmonic period problem if and only
if N has an integer factor in [2, ℓ]; i.e., if (N, ℓ) is a YES
instance of integer factorization.

The hardness result above means that we are unlikely to
be able to obtain a polynomial-time algorithm for solving the
Harmonic Period Problem; this motivates our efforts to obtain
a pseudo-polynomial algorithm that solves it.

B. An Algorithm for the Harmonic Period Problem

We now derive a pseudo-polynomial algorithm that solves
the harmonic period problem. Intuitively, it is similar to Nasri
et al.’s forward projection approach [12] (illustrated in §II,
Fig. 1), but we observe that if adjacent intervals Ii, Ii+1

overlap (i.e., if Tmin
i+1 < Tmax

i ), then the search from projected
harmonic zones into this overlapping region in Ii only requires
a re-projection into Ii+1 using the multiplier a=1 (see Fig. 2).

The procedure is outlined in Alg. 1. It first sorts tasks in
ascending order of Tmin

i ; in [12, Corollary 1], Nasri et al.
showed that projecting harmonic zones in this order will find
a set of harmonic periods, if one exists. It then performs a
breadth-first search for projected harmonic zones over just
those intervals that do not enclose any subsequent intervals
(see Fig. 3). The following lemma proves that enclosing
intervals can be removed from the search space.

Lemma 1. If adjacent tasks τi and τi+1 have intervals Ii
and Ii+1 such that Tmin

i ≤ Tmin
i+1 and Tmax

i ≥ Tmax
i+1 , we say

that the interval Ii encloses Ii+1. Then if any solution to the
harmonic period problem exists, there must exist a solution
that satisfies Ti = Ti+1.

Algorithm 1: FIND-HARMONIC-PERIODS(Γ)

1 Input: A set Γ of n tasks with period intervals Ii = [Tmin
i , Tmax

i ]
2 Output: A set of harmonic period assignments {Ti}
3 ▷ Initialize task set
4 Sort Γ in ascending order of Tmin

i
5 S ← {} ▷ Sequence of period intervals
6 forall 1 ≤ i < n do
7 if Tmax

i < Tmax
i+1 then Insert Ii into S

8 Insert In into S

9 ▷ Find projected harmonic zones
10 j ← first element in S
11 SOURCES ← {(Ij , {0})}
12 (INTERVAL, {ai})← PROJECT(S, SOURCES, 2)
13 if FAILURE then return FAILURE

14 ▷ Assign periods from harmonic zones
15 Assign to Tn any value in INTERVAL
16 forall i : n−1→ 1 do
17 if Ii ∈ S then Ti = Ti+1/aj
18 else Ti = Ti+1

19 return {Ti}

Algorithm 2: PROJECT(S, SOURCES, i)

1 Inputs: A set S of continuous period intervals Ii = [Tmin
i , Tmax

i ]
2 A set SOURCES of projected harmonic zones [Tmin, Tmax] and

corresponding sequence of multipliers M
3 An index i of the period interval in S into which to project
4 Outputs: A projected harmonic zone into the last interval in S
5 The sequence of integer multipliers that produces the corresponding

set of projected harmonic zones

6 ▷ Reached the end
7 if i ≥ |S| then
8 if SOURCES is not empty then return any element in SOURCES
9 else return FAILURE

10 j ← ith interval in S
11 TARGETS ← {}
12 o← Tmin

j ; k ← −1; ▷ Track lower-bound and index
of largest non-overlapping split region

13 forall ([Tmin
s , Tmax

s ],M) ∈ SOURCES do
14 ▷ Source zone overlaps target
15 if Tmin

j < Tmax
s then

16 Insert 1 into M
17 Insert ([Tmin

j , Tmax
s ],M) into TARGETS

18 if Tmin
s < o then o← Tmin

s ; k ← s

19 ▷ No overlap
20 else
21 amin ← ⌈Tmin

j /Tmax
s ⌉; amax ← ⌊Tmax

j /Tmin
s ⌋

22 forall amin ≤ a ≤ amax do
23 M′ ←M
24 Insert a into M′

25 Tmin ← max{Tmin
j , a · Tmin

s }
26 Tmax ← min{Tmax

j , a · Tmax
s }

27 Insert ([Tmin, Tmax],M′) into TARGETS

28 ▷ There was overlap
29 if k > −1 then
30 Tmin ← o; Tmax ← Tmin

j ; amax ← ⌊Tmax
j /Tmin⌋;

31 forall 2 ≤ a ≤ amax do
32 M′ ← kth multiplier sequence in S
33 Insert a into M′ Tmin ← max{Tmin

j , a · Tmin
s }

34 Tmax ← min{Tmax
j , a · Tmax

s }
35 Insert ([Tmin, Tmax],M′) into TARGETS

36 return PROJECT(S, SOURCES, i+ 1)
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Fig. 2: Tasks τ1–τ3 have intervals I1=[6, 10], I2=[11, 22],
I3=[19, 40]. Projected harmonic zones χ2

I1→I2 : [12, 20] and
χ3
I1→I2 : [18, 22] both overlap I3. The overlapping portions are re-

projected using only the multiplier a = 1, forming χ1
I2→I3 : [19, 20]

and χ1
I2→I3 : [19, 22]. The non-overlapping portions [12, 19] and

[18, 19] are merged and re-projected into I3 starting from multiplier
a = 2, forming χ2

I2→I3 : [24, 38] and χ3
I2→I3 : [36, 40].

Proof. Assume that for a task system Γ there exists a harmonic
assignment of periods Ti to each task τi such that Ti ∈ Ii,
i.e., for all i, j, either Ti/Tj ∈ N+ or Tj/Ti ∈ N+. Then it
follows from [12, Corollary 1] that for any two tasks τi, τj
for which Tmin

i ≤ Tmin
j there is some such assignment for

which Tj/Ti ∈ N+, implying that Ti ≤ Tj . Now assume that
Tmax
i ≥ Tmax

j . If we reassign Ti to the value Tj , it still follows
that for all k, either Ti/Tk ∈ N+ or Tk/Ti ∈ N+. Additionally,
since Tmin

i ≤ Tmin
j ≤ Tj ≤ Tmax

j ≤ Tmax
i , it still holds that

Ti ∈ Ii. So the harmonic period problem is still satisfied.

The algorithm proceeds via recursive calls to PROJECT,
outlined in Alg. 2. This takes a list (SOURCES) of projected
harmonic zones in the current interval to be re-projected to the
next interval, each paired with the sequence of multipliers that
produced it. It starts with the complete first interval and ter-
minates when the final interval is reached. To enable breadth-
first search, it keeps a list (TARGETS) of projected harmonic
zones into the next interval. For all projected harmonic zones
in SOURCES, the algorithm first checks if the zone overlaps
the next interval. If it does not, all re-projected harmonic
zones (and their corresponding multiples) from the source
zone into the next interval are added to TARGETS. However,
if it does, the zone is split (if necessary) into overlapping and
non-overlapping regions (see Fig. 2). The overlapping region
(with multiplier 1) is added to TARGETS. The following lemma
argues that this is sufficient:

Lemma 2. If adjacent tasks τi and τi+1 have intervals such
that Tmin

i ≤ Tmin
i+1 , Tmax

i > Tmin
i+1 , and Tmax

i < Tmax
i+1 , and if

a solution to the harmonic period problem exists where Ti

is assigned some value t such that Tmin
i+1 ≤ t, then a solution

must exist where both Ti = t and Ti+1 = t.

Proof. Assume that for a task system Γ there exists a har-
monic assignment of periods Ti to each task τi such that
Ti ∈ Ii, i.e., for all i, j, either Ti/Tj ∈ N+ or Tj/Ti ∈ N+.
Then it follows from [12, Corollary 1] that for any two
tasks τi, τj for which Tmin

i ≤ Tmin
j there is some such

assignment for which Tj/Ti ∈ N+, implying that Ti ≤ Tj .
Now assume that Tmax

i > Tmin
j and Tmax

i < Tmax
j . If we

reassign Tj to the value Ti, it still follows that for all
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Fig. 3: Task τ1 has period interval I1=[10, 30] and τ2 has
I2=[15, 25]. As I1 encloses I2, we remove τ1 from the search
space. Its period T1 can take the value assigned to T2. Task τ3 has
I3=[20, 40], which overlaps but is not enclosed by I2.

k, either Tj/Tk ∈ N+ or Tk/Tj ∈ N+. Additionally, since
Tmin
j ≤ Tj ≤ Tmax

i ≤ Tmax
j , it still holds that Ti+1 ∈ Ii+1.

So the harmonic period problem is still satisfied.

This says that the portion of a projected harmonic zone χ
in Ii containing periods that would be contained within the
next interval Ii+1 does not have to be projected into Ii+1

using multipliers greater than 1 if Tmax
i+1 > Tmax

χ . Because
we have eliminated from the search those intervals where
Tmax
i+1 < Tmax

i , this condition holds.
After all SOURCES have been re-projected into the next

interval as described above, it remains to deal with the largest
among the non-overlapping regions that have been split off
from overlapping regions, if there are any (all such split
regions are subsets of the largest). Projections from this region
are added to TARGETS; these start from multiplier 2, since the
overlapping region has already been projected with a multiplier
of 1. The procedure is then called recursively for the next
interval, with TARGETS passed as the new list of SOURCES.

If PROJECT succeeds in finding harmonic zones projected
into the last interval, it returns one with its sequence of
multiples to the calling procedure. Any value in the projected
harmonic zone may be assigned as the period Tn of the last
task τn, then other task periods are obtained by dividing by
their corresponding multipliers. Any task τi with an interval
completely enclosing the next (and was therefore not included
in the search) is assigned a period Ti=Ti+1 per Lemma 1.

Execution Time: For n tasks and k = Tmax
n /Tmin

1 , this al-
gorithm executes in time O(n logn + nk2), according to
the following steps. 1 Sort intervals and eliminate from
the search those which fully enclose subsequent intervals:
O(n log n). 2 Recursively find projected harmonic zones:
O(nk2). 3 Assign periods from harmonic zones: O(n).

Steps 1 and 3 are obvious, but the recursive procedure
of step 2 requires further analysis. We begin by showing
that if intervals do not overlap, then the number of projected
harmonic zones into the last interval does not exceed k2.

Theorem 2. Assume that a set of n intervals {Ii} are ordered
in such a way that ∀i, j, if 1≤i<j≤n, then Tmin

i ≤Tmin
j .

Assume further that intervals do not overlap, i.e., Tmax
i ≤Tmin

j .
Then there can be at most k2 projected harmonic zones into
the last interval In.



Proof. For any i, 2<i≤n, the number of projected harmonic
zones into Ii from a harmonic zone in Ii−1 cannot exceed
⌊Tmax

i /Tmin
i−1 ⌋. This follows from [12, Lemma 1].

Then the number of projected zones into In cannot exceed⌊
Tmax
2

Tmin
1

⌋⌊
Tmax
3

Tmin
2

⌋
. . .

⌊
Tmax
n

Tmin
n−1

⌋
≤ Tmax

2

Tmin
1

· T
max
3

Tmin
2

· . . . · T
max
n

Tmin
n−1

Then since for all 1 ≤ i < n, Tmax
i ≤ Tmin

i+1 , we have:

Tmax
2

Tmin
1

· T
max
3

Tmin
2

· . . . · T
max
n

Tmin
n−1

≤ Tmax
2

Tmin
1

· T
max
3

Tmax
1

· T
max
4

Tmax
2

· . . . · T
max
n

Tmax
n−2

=
Tmax
n−1 · Tmax

n

Tmin
1 · Tmax

1

≤
(
Tmax
n

Tmin
1

)2

= k2

We next show that if intervals do overlap, the number of
projected zones searched by the algorithm does not increase.

Theorem 3. Assume that a set of n intervals {Ii} are
ordered in such a way that ∀i, j, 1≤i<j≤n, Tmin

i ≤Tmin
j and

Tmax
i < Tmax

j , but that some intervals overlap, i.e., for some i,
Tmax
i > Tmin

i+1 . Nonetheless, there are still at most k2 harmonic
zones projected into the last interval In.

Proof. Consider adjacent intervals Ii, Ii+1. We define wi,
the number of projected harmonic zones into Ii. Then
wi = xi + yi, where xi is the number of projected harmonic
zones at least partially overlapping Ii+1 and yi is the number
not overlapping. If xi = 0 then the number of projections from
Ii to Ii+1 is the same as if the intervals themselves do not
overlap. Otherwise, if xi > 0, then the number of projected
harmonic zones into Ii+1 is no more than:

xi + (yi + 1) ·
(⌊

Tmax
i+1

Tmin
i

⌋
− 1

)
(3)

The xi term is due to the overlapping regions which are
projected only once with a multiplier of 1. The largest non-
overlapping region split off from the projected harmonic zones
that partially overlap Ii+1, as well as the yi projected harmonic
zones that do not overlap, contribute to the term (yi + 1).
These must be re-projected into Ii+1 (see Fig. 2). However,
because those projected harmonic zones χ that do not overlap
Ii+1 have Tmax

χ < Imin
i+1 , the projected harmonic zones from

these regions into Ii+1 have multiples no less than 2. Similarly
(per line 31 of Alg. 2) projections from the largest split
region may begin from 2. Thus, it follows that the number of
projected harmonic zones from these regions cannot exceed(⌊
Tmax
i+1 /Tmin

i

⌋
− 1

)
. Then we define zi = ⌊Tmax

i+1 /Tmin
i ⌋, so

the number of projected harmonic zones does not exceed:

xi + (yi + 1) · (zi − 1) = xi + yizi + zi − yi − 1

≤ xi+zi−1−xizi+xizi+yizi = −(xi−1)(zi−1)+xizi+yizi

Then since Tmin
i < Tmax

i+1 , it follows that zi ≥ 1. And since
xi ≥ 1, it follows that (xi − 1)(zi − 1) ≥ 0, so:

−(xi − 1)(zi − 1) + xizi + yizi ≤ xizi + yizi = (xi + yi)zi

This is precisely wi · ⌊Tmax
i+1 /Tmin

i ⌋, which upper bounds
the number of projected harmonic zones into Ii+1 if it does

not overlap Ii. Thus, overlapping regions do not increase the
number of projected harmonic zones.

Then, since there can be no more than k2 projected har-
monic zones into any single interval, it follows that there can
be no more than (n− 1)k2 projected harmonic zones across
n intervals. So the described algorithm runs in time O(nk2).

C. Complexity of the Harmonic Elastic Problem

Even if a set of assignments is found that satisfies the
harmonic period problem, finding the assignment that satisfies
the harmonic elastic problem is still at least weakly NP-hard,
even for a fixed value of k bounding the ratio of the task
periods. We prove this by reduction from integer partitioning.

Definition 3 (Integer Partitioning). Let A={s1, . . . , sn} be a
set of positive integers. The problem is to determine whether
A can be partitioned into two sets A1 and A2 such that the
sum of integers in A1 equals that of A2. That is, if:

S1 =
∑

si∈A1

si (4)

and similarly for S2, then the problem is to decide whether
there exist A1 and A2 such that A1 ∪A2 = A, A1 ∩A2 = ∅,
and S1 = S2. We define S=

∑
i si, i.e., S=S1+S2.

Integer partitioning is weakly NP-hard, and we demon-
strate that any instance can be solved by a polynomial-
time reduction to the harmonic elastic problem. Consider an
arbitrary instance of the problem over n positive integers.
We construct a corresponding instance of the harmonic elastic
problem consisting of a set Γ of n+ 1 elastic tasks scheduled
with a utilization bound UD = 1. For each task τi, i ≤ n, we
assign as its worst-case execution time:

Ci =
4si
3S

(5)

We allow task periods to be assigned in the interval [1, 2].
Elasticity constants are assigned to each task τi, i ≤ n as
Ei = Ci/4. The remaining task, τn+1 is assigned Cn+1 = 0
and In+1 = [1, 1], making it inelastic. Thus, the parameter k
introduced in §IV-B that bounds the ratio of task periods is
fixed to 2. Now, we let {T1, T2, . . . , Tn+1} denote a possible
period assignment, and define a value O corresponding to the
value taken by objective (1a) for this assignment. We also
define a value O∗ denoting the minimum (i.e., optimal) value
of O for which constraints (1b)–(2) are met.

Lemma 3. For the above problem instance, O∗ ≥ 2/3.

Proof. Let Ti denote the period of task τi assigned by a
solution to the harmonic elastic problem. According to the
specified task parameters, the period of Tn+1=1, so all other
tasks must take periods of either Ti=1 or Ti=2 to remain
harmonic. We then define the sets T1 = {τi|Ti = 1} and T2 =
{τi|Ti = 2}. Similarly, C1 =

∑
τi∈T1

Ci, C2 =
∑

τi∈T2
Ci,

and C =
∑

i Ci, from which it follows that C = C1 + C2 and

C =

n∑
i=1

4si
3S

=
4

3S

n∑
i=1

si =
4

3S
· S =

4

3
(6)



Then total utilization is:

U =

n∑
i=1

Ci

Ti
= C1 +

C2

2
(7)

Since for all τi ∈ T1, Ui = Umax
i , we can express O as:

O =
∑
τi∈T2

4

Ci
(Ci −

Ci

2
)2 =

∑
τi∈T2

Ci = C2 (8)

Then from (7) it follows that:

2C− 2U = 2C1 + 2C2 − 2C1 − C2 = C2 = O (9)

Equivalently, O = 2C− 2U . Then from (6) it follows that:

O = 2(4/3)− 2U = 8/3− 2U (10)

Since U is constrained as in (1b) to U ≤ UD, we have
O ≥ 8/3− 2 = 2/3, and so it follows that O∗ ≥ 2/3.

Lemma 4. A given instance of the partitioning problem is
positive if and only if O∗ = 2/3 in the constructed instance
of the harmonic elastic problem.

Proof. We first show that if the given partitioning problem is a
positive instance, then the optimal period assignment satisfies
O∗=2/3. Let A1 and A2 denote the partitions of A for which
S1=S2. We can assign task periods such that Ti=1 if si ∈ A1

and Ti = 2 if si ∈ A2. Then from (5), C1=C2=C/2. Since
C = 4/3 from (6), it follows that C2=2/3 and so from (8),
O=2/3. From the previous lemma, O∗≥2/3, and so O∗=2/3.

Next, we show that if O∗ = 2/3, then the given partitioning
problem is a positive instance. If O∗ = 2/3, then (8) implies
that C2 = 2/3. Also, since from (6), C = 4/3, this implies
that C1 = 2/3. Since C1 = C2, this implies that:∑

τi∈T1

4si
3S

=
∑
τi∈T2

4si
3S

(11)

or equivalently,
∑

τi∈T1
si =

∑
τi∈T2

s2, which implies that
S1 = S2, so the problem is positive.

V. THE ORDERED HARMONIC ELASTIC PROBLEM

We restrict our attention now to the ordered harmonic elastic
problem, as defined in §III. Suppose we have a set Γ of n
tasks, indexed so that for any τi, τj , if i < j then Ti ≤ Tj .
It follows, then, that an assignment of harmonic periods can
be expressed according to T1 (the shortest period assignment)
and a set of multiples {ai, 1≤i≤n} where Ti = ai · T1.

Definition 4 (Projected Harmonic Interval (PHI)). For a set
Γ of n elastic tasks, a projected harmonic interval is an
ordered collection of values Pj = (Tmin

j , Tmax
j , a1,j , . . . , an,j)

with a1,j≡1. It represents the largest continuous interval
[Tmin

j , Tmax
j ] ⊆ [Tmin

1 , Tmax
1 ] from which a period T1 can be

selected so that a period Ti = ai,j · T1 assigned to task τi is
within the interval Ii that characterizes the task. Furthermore,
for all b, c, 1 ≤ b ≤ c ≤ n it holds that ac,j/ab,j ∈ N+.

Enumeration-Based Solution Approach: The set of all PHIs
P = {Pj} for a task set represents the complete space of joint

harmonic period assignments that can be selected from the
continuous intervals characterizing each task. Thus, a naı̈ve
approach to optimally solving the ordered harmonic elastic
problem for a given utilization bound is to enumerate the
complete set of PHIs, then determine which PHI minimizes
the elastic objective (Eqn. 1a) for that utilization. To do so,
we define Umin

Pj
, the minimum utilization bound that can

accommodate PHI Pj . This can be calculated as:

Umin
Pj

=
∑
i

Ci

ai,j · Tmax
j

=
1

Tmax
j

∑
i

Ci

ai,j
(12)

For simplicity of notation, we define the terms
yi,j = Ci/ai,j and Yj =

∑
i yi,j . Then Umin

Pj
= Yj/T

max
j .

Similarly, the maximum utilization that can be achieved by
PHI Pj is Umax

Pj
= Yj/T

min
j . It follows from Eqn. 1a that for

UD ≥ Umin
Pj

, the elastic objective OPj
(UD) for PHI Pj is:

OPj
(UD) =


∑n

i=1
1
Ei

(
Umax
i − yi,jUD

Yj

)2

if UD ≤ Umax
Pj∑n

i=1
1
Ei

(
Umax
i −

yi,jU
max
Pj

Yj

)2

if UD > Umax
Pj

(13)
Our naı̈ve approach computes OPj (UD) for every PHI Pj .

The PHI that minimizes the objective is selected, and task τ1
is assigned the period TUD

1,j :

TUD
1,j = min

{
Tmin
j , Yj/UD

}
(14)

Other task periods are then assigned as Ti = ai,j · TUD
1,j .

Bounding Enumeration: This enumeration-based approach
may be inefficient as the number of PHIs grows rapidly.
However, this growth is bounded, a result which we will use
to provide a polynomial-time algorithm for online adjustment.

Theorem 4. For n tasks and k=Tmax
n /Tmin

1 as in §IV, the
number of PHIs |P| is bounded by k(n− 1)⌊log k⌋.

Proof. We know that there is a sequence {a2, . . . , an},
ai ∈ N+ such that Tmin

1 · a2 · . . . · an ≤ Tmax
n , which implies

that a2 · . . . · an ≤ Tmax
n /Tmin

1 = k. We define hn,k as the
number of unique such sequences satisfying a2 · . . . · an ≤ k.
Similarly, we define h∗

n,k as the number of unique such
sequences satisfying a2 · . . . · an = k. It follows that

hn,k =

k∑
ℓ=1

h∗
n,ℓ

We say an integer ℓ has a unique factorization into pℓ
primes. Then a sequence satisfying a2 · . . . · an = ℓ must be
formed in such a way that each value ai, 2<i≤n is the product
of 1 and zero or more of the prime factors of ℓ, selected
without replacement. The number of unique assignments of pℓ
primes to n−1 factors is exactly (n− 1)pℓ for non-repeated
prime factors, fewer otherwise. And the value pℓ is upper
bounded by ⌊log ℓ⌋. So h∗

n,ℓ ≤ (n− 1)⌊log ℓ⌋, and so

hn,k =

k∑
ℓ=1

h∗
n,ℓ ≤

k∑
ℓ=1

(n− 1)⌊log ℓ⌋ ≤ k(n− 1)⌊log k⌋



(a) Calculated number of PHIs. (b) Upper bound on PHIs.
Fig. 4: Enumeration of projected harmonic intervals.

We note that this derived upper bound is not tight, because
if ℓ ̸= 2a for a ∈ N, then pℓ < ⌊log ℓ⌋. Furthermore, many
integers have repeated prime factors. To better analyze this
bound, we compute hn,k for values of n from 2–30 and values
of k from 1–100. Results are plotted in Fig. 4a, and compared
in Fig. 4b with the upper bound from Thm. 4. For n=30 and
k=100, the upper bound is ∼ 5.9e10, whereas the real count
is under 1.5e7, almost 4000× fewer.

Polynomial Online Adjustment: We now describe a more
efficient algorithm to reassign task periods in response to
runtime changes to available utilization. It assigns the same
periods as the enumeration-based approach described above,
finding an optimal solution to the ordered harmonic elastic
problem if one exists. Through offline enumeration of P, it
constructs a lookup table over the space of utilizations that
can accommodate the task system. It associates ranges of
utilization with the PHI achieving the lowest elastic objective.
Binary search enables polynomial-time online period selection.

The procedure, outlined in Alg. 3, takes a set Γ of n elastic
tasks, as well as the set P of all PHIs. It then creates a list R
sorted over contiguous and continuous regions of utilization,
where each region Rk = (Rmin

k , Rmax
k , Pj) captures the PHI

Pj that achieves the lowest elastic objective for utilizations in
[Rmin

k , Rmax
k ]. To do so, it creates a region for the first PHI,

then iterates over all remaining PHIs Pj . Each one is compared
to all existing regions in order; those for which Rmax

k ≤ Umin
Pj

are skipped. When comparing a PHI Pj to a region Rk, the
procedure finds points within the region where it may need
to be split, i.e., those distinct sub-regions where the elastic
objective value achieved by Pj may be less than that of the
region’s PHI Pk. These split points are of two types. In the
first considered region for which Rmax

k >Umin
Pj

, if Rmin
k <Umin

Pj
,

then it splits at Umin
Pj

. It may also split at those points U where
the elastic objectives intersect, i.e., where OPj

(U)=OPk
(U).

Because we are concerned only with minimizing the objec-
tive, we eliminate constant terms:

O∗
Pj
(UD) =

{
APjU

2
D −BPjUD if UD ≤ Umax

Pj

APj
(Umax

Pj
)2 −BPj

Umax
Pj

if UD > Umax
Pj

(15)

APj =
1

Y 2
j

∑
i

y2i,j
Ei

(16)

BPj
=

2

Yj

∑
i

yi,jU
max
i

Ei
(17)

Algorithm 3: GENERATE-LOOKUP-TABLE(Γ,P)

1 Inputs: A set Γ of n elastic tasks, the set P of all PHIs over Γ
2 Output: A sorted list R over continuous, contiguous regions

Rk = (Rmin
k , Rmax

k , Pk) indicating that the projected harmonic
interval Pk achieves the minimum elastic objective in the
utilization range [Rmin

k , Rmax
k ]

3 ▷ Compute PHI parameters
4 forall Pj ∈ P do
5 Compute Umin

Pj
, Umax

Pj
, YPj

, APj
, BPj

, O∗
Pj

(Umax
Pj

)

according to Eqns. 12, 15, 16, 17

6 ▷ Construct regions
7 R ← {(Umin

1 ,∞, P1)}
8 forall Pj ∈ P, j > 1 do
9 forall Rk ∈ R do

10 (Rmin
k , Rmax

k , Pk)← Rk

11 if k is 1 and Umin
j < Rmin

k then
12 Insert (Umin

j , Rmin
k , Pj) into R before Rk

13 if Umax
j ≤ Rmin

k then continue
14 if Rmin

k < Umin
j then

15 Insert (Rmin
k , Umin

j , Pk) into R before Rk

16 Rmin
k ← Umin

j

17 ▷ Parabola/parabola intersection
18 if Aj ̸= Ak and Bj ̸= Bk then

q ← (Bj −Bk)/(Aj −Ak)
19 else q ← 0
20 if q /∈ Rk or q > Umax

j or q > Umax
k then q ← 0

21 ▷ Line/parabola intersection
22 if Omin

j < Omin
k then

23 ℓ←
Bj−

√
B2

j+4AjO
min
k

2Aj

24 if ℓ /∈ Rk or ℓ < Umax
k or ℓ > Umax

j then ℓ← 0

25 else

26 ℓ←
Bk−

√
B2

k
+4AkO

min
j

2Ak

27 if ℓ /∈ Rk or ℓ < Umax
j or ℓ > Umax

k then ℓ← 0

28 ▷ Split region
29 REGIONS ← Rk

30 if q > 0 then Split Rk at q
31 if ℓ > 0 then Split Rk at ℓ
32 Replace Rk with REGIONS

33 ▷ Associate region with better PHI
34 forall Rℓ ∈ REGIONS do
35 Uℓ ← (Rmin

ℓ +Rmax
ℓ )/2

36 Ok ← max
{
Omin

ℓ , Ak · U2
ℓ −Bk · Uℓ

}
37 Oj ← max

{
Omin

j , Aj · U2
ℓ −Bj · Uℓ

}
38 if Oj < Oi then Rℓ points to Pj

39 ▷ Merge redundant regions
40 if Pℓ matches Pℓ−1 then
41 Rmin

ℓ ← Rmin
ℓ−1

42 Delete Rℓ−1

43 return R

Then there are two points where the objectives may inter-
sect. The first is where the quadratic terms are equal:

APj
U2 −BPj

U = APk
U2 −BPk

U

If APj
̸= APk

and BPj
̸= BPk

, then this is:2

U =
BPj

−BPk

APj −APk

(18)

2They also trivially intersect at U = 0, but this point is not considered.
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Fig. 5: The set of possible elastic objective intersections.

This value is calculated, then checked to ensure it is within
the considered region and does not exceed Umax

Pj
and Umax

Pk
(in

which case it lies outside the quadratic objective component).
The other intersection point is where the larger of the two

PHI objectives’ constant components intersects the quadratic
component of the other. This can only happen at a single
point not exceeding the utilization for which the quadratic
component is minimized, illustrated in Fig. 5. Without loss
of generality, assume O∗

Pj
(Umax

Pj
) < O∗

Pk
(Umax

Pk
). Then the

intersection occurs where:

APjU
2 −BPjU = O∗

Pk
(Umax

Pk
)

Solving for the smaller value of U :

U =
BPj

−
√
B2

Pj
+ 4APj

O∗
Pk
(Umax

Pk
)

2APj

(19)

Again, this value is checked to ensure it is both within
the considered region, and within the range of utilizations
for which O∗

Pj
is quadratic and O∗

Pk
is constant — or vice

versa, if O∗
Pk
(Umax

Pk
)<O∗

Pj
(Umax

Pj
). Once intersections have

been identified, the region is split at those points, and each
sub-region is associated with the PHI with the lower objective
value according to Eqn. 15. Adjacent sub-regions with the
same PHI are merged before replacing the region Rk.

The produced set of regions R is a sorted lookup table over
the entire utilization range that can accommodate the task set.
Each region Rk is associated with the PHI Pj that minimizes
the elastic objective for the corresponding utilization interval.
Thus, for a given utilization bound UD, binary search finds
the optimal PHI in polynomial time, as we now prove.

Theorem 5. For a set of regions R constructed over |P| = h
projected harmonic intervals, |R| does not exceed h2.

Proof. We prove this by induction. Clearly if h = 1, the
number of elements of R is 1, which is h2.

The algorithm generates regions by iterating over the set of
PHIs. Assume that it is constructing a set of regions for h+ 1
PHIs. Further assume that after iterating over the first h PHIs,
it holds that for the number x of elements in R, x ≤ h2.

The insertion of PHI Ph+1 can add a region to R for every
point at which its objective O∗

Ph+1
intersects the objective

O∗
Pi

for each PHI i, 1 ≤ i ≤ h. As there are two such
possible intersections for each PHI, this can produce up to 2h
additional regions. Furthermore, an additional region might
be added if Umin

h+1 is less than Rmin
1 , the current minimum

utilization covered by R. Alternatively, an additional region
might be added if Umin

h+1 > Rmin
j for the first region Rj where

Umin
h+1 < Rmax

j . As both conditions cannot be true, it follows
that only up to 2h+ 1 additional regions may be added.

Then the total number of regions after insertion of Ph+1

does not exceed x+ 2h+ 1 ≤ h2 + 2h+ 1 = (h+ 1)2.

Corollary 1. For n tasks and k = Tmax
n /Tmin

1 as in §IV, the
number of regions in R does not exceed k(n− 1)2⌊log k⌋.

Proof. From Thm. 4, we know that for the number of PHIs
h does not exceed k(n− 1)⌊log k⌋. Then from Thm. 5, for h
PHIs the number of regions does not exceed h2.

Corollary 2. For n tasks and k = Tmax
n /Tmin

1 as in
§IV, binary search over the set of regions R takes time
O(log2 k+ log k· logn)

Proof. For a sorted list of x elements, binary search requires
O(log x) time. Then from Corollary 1, |R| ≤ k(n− 1)2⌊log k⌋.
So binary search proceeds in time:

log
(
k(n− 1)2⌊log k⌋

)
= 2⌊log k⌋ (log k + log(n− 1))

This is O(log2 k + log k· log n), which is polynomial in the
length of the input.

VI. EVALUATION

A. Characterizing Elasticity

The elasticity constant Ei assigned to task τi is intended to
represent “the flexibility of the task to vary its utilization” [1].
The elastic objective (Eqn. 1a) as formulated by Chantem
et al. in [14], [15] suggests the first-order error induced by
individually decreasing the rate Ri of task τi from its fastest
desired value Rmax

i can be described as:

L = wi(R
max
i −Ri)

2 (20)

where wi = C2
i /Ei and L is some measure of loss or error.

Then for a given application, if the set of weights {wi} are
obtained, each task’s elasticity can be assigned as:

Ei = C2
i /wi (21)

We use this interpretation to assign elasticity constants to
each task in our evaluated applications.

B. FIMS

The Fast Integrated Mobility Spectrometer (FIMS) [6] is
a flown instrument that characterizes atmospheric aerosols.
Recent efforts to enable real-time measurements of aerosol
particle sizes (e.g., to instruct the aircraft to follow an aerosol
plume) achieved the desired performance on a Raspberry
Pi 4 [37]. The improved computational pipeline captures
and processes images to detect particles, grouping them into
fixed-duration windows of particle inlet time. Using matrix
inversion, it converts instrument responses from particle spatial
coordinates to determine the particle size distribution within
each window. “Housekeeping” (HK) data readouts from other
sensors (e.g., temperature and pressure) are synchronized with
the inversion process, and are used to determine if a new
data inversion matrix must be computed. Harmonic execution
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Fig. 6: Dataflow pipelines of the tested applications.

guarantees a fixed, integral number of time windows associated
with each job. This stabilizes the fraction of particles lost dur-
ing the inversion process, ensuring a consistent representation
of particle distribution and maintaining measurement accuracy,
while also bounding the latency between a particle’s inlet time
and its subsequent inclusion in the reported size distribution.

In our evaluation, we consider a future deployment where
FIMS runs concurrently with other applications (e.g., flight
control, SLAM, and telemetry) atop SWaP-constrained hard-
ware, e.g., on a UAV. To examine its portability across
embedded platforms, we experiment with constraining FIMS
to just a fraction of the bandwidth of a single core of the Pi 4
and verify that, by using harmonic elastic scheduling to adjust
the FIMS task periods, we can avoid missing deadlines.
Experimental Setup: We run FIMS on a Raspberry Pi 4 Model
B, which has a 4-core, 64-bit Cortex-A72 (ARM v8) CPU
running at 1.50GHz and 4GB of RAM. We test with Linux
5.10.103 and disable CPU throttling. Image processing, HK
data reading, and data inversion are all pinned to the same CPU
core and run under the SCHED_FIFO real-time scheduling
class using rate monotonic priorities. Lacking direct access
to the prototype FIMS instrument, we instead use an offline
dataset consisting of camera images from its particle chamber
and readouts from its other sensors. To avoid delays from disk
I/O, we load these into program memory prior to execution. In
a complete implementation, separate threads will perform the
memory transfer from attached USB devices asynchronously.
A complete run with our experimental dataset handles 12 000
images, processed at a period of 100 ms. HK data is read every
500 ms and data inversion runs every second.
Profiling Execution Times: To measure execution times asso-
ciated with each task, we make calls to getrusage() when
each job completes, measuring the total CPU time (user and
system) consumed by the task since the end of the prior job.
This accounts for execution of the task’s function plus the
overhead of context switching and timer handling. To capture
worst-case conditional behavior, we force recalculation of the
inversion matrix with each iteration of data inversion. Profiling
results over 10 complete runs are plotted in Fig. 7d – 7f.
Assigning Elasticity Values: We assign elasticity values to
tasks per the methodology in §VI-A. We define loss as
1000 · (1− θ), where θ is the cosine similarity between the
distribution of particle sizes produced by a period-adjusted
run of FIMS and the ground-truth values. We measure the loss
associated with adjusting task periods individually. To reflect
the real instrument’s behavior, when increasing the image
processing period we stack successive image frames. When
increasing the HK data period by a factor of n×, we sample

every nth data point, interpolating over the most recent two.
For data inversion, we change the time bin over which particle
size distributions are measured to remain equal to the period.
Results are plotted in Fig. 7a – 7c. Using linear regression over
the measured error values for each task τi, with (Rmax

i −Ri)
2

as the independent variable, we obtain values of wi according
to Eqn. 20, then use these to compute values of Ei per Eqn. 21.
The following table summarizes the assigned parameters:

Tmin
i Tmax

i Ci Ei

Process Image 100 1000 43.0 2.11
HK Data 500 5000 0.747 0.012

Data Inversion 1000 10000 55.3 1.23

Evaluating Scalability: With these parameters, FIMS demands
a maximum utilization of 0.487. To test under tighter con-
straints, we run a highest priority interference task that limits
CPU utilization by FIMS: it registers an interval timer with a
period of 50 ms and spins for a programmable length of time.
We run FIMS concurrently with the interference task using
different busy loop durations, adjusting the FIMS task periods
according to our harmonic elastic model. We then measure
each FIMS job’s latency (elapsed wallclock time) from task
release to completion; results are shown in the following table.
Lmax indicates the longest measured latency over 3 complete
runs; this value never exceeds the corresponding task period,
indicating that no deadlines were missed.

UD TIMAGE THK TINV Lmax
IMAGE Lmax

HK Lmax
INV

0.5 100 500 1000 67 305 305
0.4 115 575 2298 94 489 1275
0.3 147 881 9682 137 709 822
0.2 222 3325 9973 222 1324 1327
0.1 458 3205 9615 348 2784 2785

C. ORB-SLAM3

ORB-SLAM3 [18] is a visual-inertial simultaneous localiza-
tion and mapping system widely used in autonomous vehicle
applications. Object tracking fuses captured image frames
with interstitial inertial measurements to detect feature points
and generate descriptions. These are then matched against a
map database of prior descriptions to determine the system’s
position. If the current environment differs sufficiently from
the existing map, the map is updated within the mapping task.

Our goal is to consider the portability of ORB-SLAM3 to
SWaP-constrained hardware, where it may execute concur-
rently on a single core with other applications; the utilization
UD available to it may change during runtime. While missed
deadlines do not necessarily result in system failure, we show
that adjusting task periods in a principled way offers better
localization than its baseline implementation.
Experimental Setup: We run ORB-SLAM3 on a 6-core Intel
i7-4960X running at 3.6GHz with 12GB of RAM using
Linux 4.9.30 built with LITMUSˆRT [38]. We disable Hy-
perThreading and CPU throttling. We evaluate in simulation
using the EuRoC MAV dataset [39] from drones in real-world
environments. Realistic timing is achieved by using ROS [40]
to deliver image frames and inertial measurement unit (IMU)
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Fig. 7: Experimental results on FIMS and ORB-SLAM3.

data as messages. IMU data arrives every 5 ms, and camera
frames every 50 ms; a single trace includes 187 seconds worth
of data. Tracking executes with as period of 50 ms, and
by default, mapping executes only when tracking identifies
a keyframe (with a minimum period of 50 ms).

Profiling Execution Times: We measure the execution times
of each task by successive calls to clock_gettime()
using CLOCK_THREAD_CPUTIME_ID. Results for each task,
profiled over a complete trace, are shown in Fig. 7j – 7m.

Assigning Elasticity Values: For ORB-SLAM3, we define loss
as 104X , where X is the relative translational error (RTE)
of the completed map in units of meters from the ground
truth. We again capture the first-order effects of adjusting
task periods individually. Here, we treat the two stereo image
processing threads and the tracking thread as a single task
(the application’s dataflow pipeline requires these to run at
the same rate). We simulate increases in the IMU and image
task periods by dropping message frames (e.g., for an IMU
period of 10 ms, we drop every other IMU message).

To achieve more deterministic execution time behavior, we
modify tracking to categorize every image frame as a keyframe
– in a non-degraded state, mapping will perform updates for
every frame. However, if utilizations are compressed due to
overload, keyframes are selected according to the harmonic
relationship between the mapping and tracking periods. To
characterize the impact on loss, we hold other periods constant
while decreasing the number of frames selected as keyframes
(thus increasing the mapping period). We slow the replay of
the EuRoC dataset to allow mapping to process every frame
as a keyframe without overrunning its deadline.

Results are plotted in Fig. 7g – 7i. We again use linear
regression to fit values of wi (Eqn. 20). Observe that in Fig. 7h,
the last point (corresponding to a period of 250 ms) diverges
sharply from the linear trend. This suggests unstable behavior,
so we limit the fit (and Tmax

i ) to 200 ms. Note also that when
increasing the image and tracking periods, the mapping period
is also increased (its period cannot be less than these tasks);
we adjust the first-order weight that characterizes the image

and tracking task accordingly. After computing values of Ei

(Eqn. 21), we obtain the following task parameters:

Tmin
i Tmax

i Ci Ei

IMU 5 20 0.015 0.263
Camera + Tracking 50 200 31.3 4006

Mapping 50 1200 270 1.14e5

Evaluation of Online Adjustment: We artificially limit the
CPU utilization available to ORB-SLAM3 by pinning all of
its threads on a single core and restrict its total bandwidth with
Linux cgroups. We modify the beginning of its main loop to
(1) select a random amount of available utilization between
0.50–0.75, (2) enforce this by updating the cgroup, (3) run
the online algorithm described in §V to search the lookup
table (generated during program initialization) for the best PHI
corresponding to that utilization, then (4) update task periods
accordingly. This is invoked every second to allow completion
of at least one hyperperiod, and incurs an overhead of < 22µs
to select and update the period assignments.

We run ORB-SLAM3 in this manner over EuRoC trace
MH 01, comparing its accuracy to an unmodified (non-
adaptive) baseline version of the program. Results are plotted
in Fig. 7n. In our constrained execution environment, the mean
RTE of the baseline implementation (Baseline) is 89mm, and
only succeeds in mapping the final 139s of the flight. In
contrast, the adaptive implementation (Elastic model) achieves
a mean RTE of 13mm, a 6.6× reduction, and maps the final
164s. Using insights from past experience, we also try using
the mean observed execution times for the mapping, camera,
and tracking workloads (Tuned elastic model). This achieves
even better accuracy: the mean RTE is only 8.6mm, a 10.4×
reduction, and maps the entire flight.

Finally, we compare our results to the adaptive approach
of Li et al. in [19] where ORB-SLAM3 is integrated with an
online machine learning model that predicts budget constraints
and adapts execution via selective frame dropping, achieving a
mean RTE of 9.3mm. Not only does our elastic model achieve
better localization, it is more suited for broad use across real-
time applications than the approach in [19]: on a hard real-
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Fig. 8: Evaluation results for synthetic task sets.

time system, task dropping may be unacceptable, so our elastic
model extends task periods to avoid missed deadlines. Fur-
thermore, our approach enables straightforward adaptation of
execution parameters using only a basic characterization of the
impacts on control performance and does not require highly-
tailored ML-based integration with the existing application.

D. Evaluation with Larger Synthetic Task Sets

The ORB-SLAM3 and FIMS task sets are relatively small:
in this subsection, we explore how task set size impacts the
performance of the algorithms discussed in §IV-B and §V
using randomly generated task parameters.
Experimental Setup: We generate 1000 task sets each of
sizes 5–50. The minimum period Tmin

i of each task τi is
sampled from the log-uniform distribution described in [41]
over integers in the range [1, 100]. A maximum period Tmax

i

is obtained by multiplying each Tmin
i by a value selected

uniformly in [1, 10]; this bounds the ratio k of the largest to
smallest periods at 1000. Each task set is assigned a total
maximum utilization of 1; individual task utilizations Umax

i

are then assigned using the UUniSort algorithm [42]. Ci is
derived as Umax

i · Tmin
i . Weights wi are selected uniformly in

[0, 1], from which elasticities Ei are computed according to
Eqn. 21. Tasks are then sorted by Tmin

i . We implement the
algorithms in C++, and compile them with GCC optimization
level -O3. All experiments are run on a single core of an AMD
EPYC 9754 with 128GB of RAM running Linux 5.14.0.
The Harmonic Period Problem: We first evaluate the pro-
posed approach to the harmonic period problem described in
§IV-B. For each number of tasks, we count how many of
the 1000 corresponding sets had a feasible harmonic period
assignment, how long it took to find such an assignment,
and how many harmonic zones were projected onto the last
interval. In Fig. 8a, we see that as the number of tasks
increases, the proportion of task sets for which a solution exists
goes down. We see in Fig. 8b that the maximum number of
harmonic zones projected onto the last interval also decreases
as the number of tasks increases, even though our theoretical
bound increases. We conjecture that this is because adding

more period intervals will typically impose tighter constraints
on the harmonic search. We also see in Fig. 8b that the
algorithm is efficient, executing in under 2.2 ms. Its observed
maximum execution times do not have a tight relationship with
the number of harmonic zones projected onto the last interval.

The Ordered Harmonic Elastic Problem: We then evaluate
both the naı̈ve and efficient approaches to the ordered har-
monic elastic problem described in §V. For those task sets
where a harmonic assignment is possible, we count how many
projected harmonic intervals (PHIs) are found, how long it
takes to generate the lookup table (LUT), and how many
entries it has. We also compare the time it takes to iterate
over all PHIs to find the optimal period assignment, versus
performing binary search. In Fig. 8c, we observe that the
maximum number of PHIs grows with the number of tasks.
The time to generate the lookup table, as well as for the naı̈ve
search, remain proportional to the number of PHIs. The naı̈ve
search does not exceed 170 ms; it is reasonably efficient, and
provides greater flexibility as it allows for online admission of
new harmonic tasks, though it might be too slow for online use
with larger task systems. Times to generate the LUT remain
under 10 ms for up to 8 tasks, but reach as high as 12.6 minutes
for up to 50 tasks. This suggests that for smaller task systems,
recomputing a set of harmonic assignments online if a new
elastic task is admitted to the system may be feasible. For
larger task sets, slow offline computation of the lookup table
nonetheless allows for rapid online adaptation of existing task
periods: searching the lookup table and assigning new periods
does not exceed 3.2 µs, as shown in Fig. 8d.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have considered how to extend elastic
scheduling to systems of tasks with harmonic periods. We
argue that, if every task’s period is constrained to a continuous
interval, then finding a set of harmonic periods is unlikely
to have a polynomial time solution. However, we outline a
pseudo-polynomial algorithm to solve the problem, and show
it is efficient even for large task sets. We demonstrate that
our approach allows applications such as FIMS and SLAM
to be deployed effectively atop SWaP-constrained hardware
platforms. Quantifying the impact on result error of increasing
individual task periods lets us successfully assign values to
each task, and for ORB-SLAM3, this approach allowed for a
10.4× decrease in localization error compared to a baseline
implementation on a dynamic resource-constrained system.

As future work, we will extend to tasks with elastic execu-
tion times, and consider the case where workloads depend on
the selected period ratios. We will also explore the implications
of adjusting periods during (rather than between) hyperperiods.

ACKNOWLEDGMENT

This research was supported by NSF grants CPS-2229290,
CNS-2141256, CNS-2038995, and CNS-2238635; a Washing-
ton University CSE/EECE seed grant; and Swedish Research
Council grant 2018-04446.



REFERENCES

[1] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for
adaptive rate control,” in Proc. of IEEE Real-Time Systems Symposium,
1998. [Online]. Available: https://doi.org/10.1109/REAL.1998.739754

[2] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions on
Computers, vol. 51, no. 3, pp. 289–302, Mar. 2002. [Online]. Available:
http://dx.doi.org/10.1109/12.990127

[3] H. Li, J. Sweeney, K. Ramamritham, R. Grupen, and P. Shenoy, “Real-
time support for mobile robotics,” in The 9th IEEE Real-Time and Em-
bedded Technology and Applications Symposium, 2003. Proceedings.,
2003, pp. 10–18.

[4] J. Orr, J. C. Uribe, C. Gill, S. Baruah et al., “Elastic scheduling
of parallel real-time tasks with discrete utilizations,” in Proc.
of 28th International Conference on Real-Time Networks and
Systems. ACM, 2020, pp. 117–127. [Online]. Available: https:
//doi.org/10.1145/3394810.3394824

[5] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and
localization for an autonomous mobile robot,” in Proceedings IROS
’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems
’91, 1991, pp. 1442–1447 vol.3.

[6] J. Wang, M. Pikridas, S. R. Spielman, and T. Pinterich, “A fast integrated
mobility spectrometer for rapid measurement of sub-micrometer aerosol
size distribution, part i: Design and model evaluation,” Journal of
Aerosol Science, vol. 108, pp. 44–55, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021850216304426

[7] A. Li, J. Wang, S. Baruah, B. Sinopoli, and N. Zhang, “An empirical
study of performance interference: Timing violation patterns and im-
pacts,” in 2024 Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2024.

[8] V. Brocal, P. Balbastre, R. Ballester, and I. Ripoll, “Task period selection
to minimize hyperperiod,” in ETFA2011, 2011, pp. 1–4.

[9] I. Ripoll and R. Ballester-Ripoll, “Period selection for minimal hyperpe-
riod in periodic task systems,” IEEE Transactions on Computers, vol. 62,
no. 9, pp. 1813–1822, 2013.

[10] H. Kopetz, “On the design of distributed time-triggered embedded
systems,” Journal of Computing Science and Engineering, vol. 2, no. 4,
pp. 340–356, 2008.

[11] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Real-Time Syst., vol. 2, no. 4, p. 301–324, oct
1990. [Online]. Available: https://doi.org/10.1007/BF01995675

[12] M. Nasri, G. Fohler, and M. Kargahi, “A framework to construct
customized harmonic periods for real-time systems,” in 2014 26th
Euromicro Conference on Real-Time Systems, 2014, pp. 211–220.

[13] M. Nasri and G. Fohler, “An efficient method for assigning harmonic
periods to hard real-time tasks with period ranges,” in 2015 27th
Euromicro Conference on Real-Time Systems, 2015, pp. 149–159.

[14] T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic
scheduling,” in Proc. of IEEE International Real-Time Systems
Symposium, 2006, pp. 236–245. [Online]. Available: https://doi.org/10.
1109/RTSS.2006.24

[15] ——, “Generalized elastic scheduling for real-time tasks,” IEEE
Transactions on Computers, vol. 58, no. 4, pp. 480–495, Apr. 2009.
[Online]. Available: https://doi.org/10.1109/TC.2008.175

[16] G. Bunting, P. Lindsay, A. Maghareh, A. Prakash, and S. Dyke,
“Using multi-time stepping in finite element models to meet real time
constraints,” in EMI/PMC 2012 Joint Conference of the Engineering
Mechanics Institute and the 11th ASCE Joint Specialty Conference on
Probabilistic Mechanics and Structural Reliability, 2012.

[17] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “Orb-slam: A versatile
and accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[18] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[19] A. Li, H. Liu, J. Wang, and N. Zhang, “From timing variations to perfor-
mance degradation: Understanding and mitigating the impact of software
execution timing in slam,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022.

[20] M. Sudvarg, C. Gill, and S. Baruah, “Linear-time admission control for
elastic scheduling,” Real-Time Systems, vol. 57, no. 4, pp. 485–490, Oct
2021. [Online]. Available: https://doi.org/10.1007/s11241-021-09373-4

[21] J. Orr and S. Baruah, “Multiprocessor scheduling of elastic tasks,”
in Proc. of 27th International Conference on Real-Time Networks
and Systems. ACM, 2019, pp. 133–142. [Online]. Available:
https://doi.org/10.1145/3356401.3356403

[22] S. Baruah, “Improved uniprocessor scheduling of systems of sporadic
constrained-deadline elastic tasks,” in Proceedings of the 31st
International Conference on Real-Time Networks and Systems, ser.
RTNS ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 67–75. [Online]. Available: https://doi.org/10.1145/
3575757.3575759

[23] M. Sudvarg, S. Baruah, and C. Gill, “Elastic scheduling for fixed-priority
constrained-deadline tasks,” in 2023 IEEE 26th International Symposium
on Real-Time Distributed Computing (ISORC), 2023, pp. 11–20.

[24] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in Proc.
of 26th Euromicro Conference on Real-Time Systems, 2014, pp. 85–96.
[Online]. Available: https://doi.org/10.1109/ECRTS.2014.23

[25] J. Orr, C. Gill, K. Agrawal, J. Li, and S. Baruah, “Elastic scheduling for
parallel real-time systems,” Leibniz Transactions on Embedded Systems,
vol. 6, no. 1, p. 05:1–05:14, May 2019. [Online]. Available: https:
//ojs.dagstuhl.de/index.php/lites/article/view/LITES-v006-i001-a005

[26] J. Orr, C. Gill, K. Agrawal, S. Baruah et al., “Elasticity of workloads
and periods of parallel real-time tasks,” in Proc. of 26th International
Conference on Real-Time Networks and Systems. ACM, 2018, pp.
61–71. [Online]. Available: https://doi.org/10.1145/3273905.3273915

[27] T.-W. Kuo and A. Mok, “Load adjustment in adaptive real-time systems,”
in [1991] Proceedings Twelfth Real-Time Systems Symposium, 1991, pp.
160–170.

[28] C.-C. Han and H.-Y. Tyan, “A better polynomial-time schedulability
test for real-time fixed-priority scheduling algorithms,” in Proceedings
Real-Time Systems Symposium, 1997, pp. 36–45.

[29] C.-C. Han and K.-J. Lin, “Scheduling distance-constrained real-time
tasks,” in [1992] Proceedings Real-Time Systems Symposium, 1992, pp.
300–308.

[30] C.-S. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and L. Sha,
“Scheduling real-time dwells using tasks with synthetic periods,” in
RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003, 2003, pp.
210–219.

[31] M. Fan and G. Quan, “Harmonic semi-partitioned scheduling for fixed-
priority real-time tasks on multi-core platform,” in 2012 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2012, pp.
503–508.

[32] N. Min-Allah, I. Ali, J. Xing, and Y. Wang, “Utilization bound for
periodic task set with composite deadline,” Computers & Electrical
Engineering, vol. 36, no. 6, pp. 1101–1109, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790610000406

[33] D. Ferry, G. Bunting, A. Maghareh, A. Prakash, S. Dyke, K. Agrawal,
C. Gill, and C. Lu, “Real-time system support for hybrid structural
simulation,” in Proceedings of the 14th International Conference
on Embedded Software, ser. EMSOFT ’14. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2656045.2656067

[34] M. Mohaqeqi, M. Nasri, Y. Xu, A. Cervin, and K.-E. Årzén, “Optimal
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