
Elastic Scheduling for Graceful Degradation of Mixed-Criticality
Systems

Zhuoran Sun

Washington University in St. Louis

St. Louis, US

zhuoran.sun@wustl.edu

Marion Sudvarg

Washington University in St. Louis

St. Louis, US

msudvarg@wustl.edu

Christopher Gill

Washington University in St.louis

St. Louis, US

cdgill@wustl.edu

Abstract
Manymixed-criticality systemmodels drop all jobs of low-criticality

tasks when a criticality mode switch occurs, ensuring that high-

criticality tasks still can meet their deadlines in the new mode.

However, this means that even important low-criticality tasks are

discarded, which may not be acceptable in some systems in prac-

tice. This paper addresses that distinction between criticality and

importance through a new Inelastic Graceful Earliest Deadline First

with Virtual Deadlines (IG-EDF-VD) scheme that upon a critical-

ity mode switch only discards the least important low-criticality

tasks necessary to ensure feasibility. Moreover, we consider elas-

tic scheduling within our mixed-criticality model (EG-EDF-VD),

using compression of workload-elastic tasks’ utilizations (and, as

a result, execution time budgets) to reduce further the number of

low-criticality tasks that are dropped.

CCS Concepts
• Computer systems organization→ Real-time systems.

Keywords
Real-Time Systems, Mixed-Criticality Systems, Elastic Scheduling,

Graceful Degradation

ACM Reference Format:
Zhuoran Sun, Marion Sudvarg, and Christopher Gill. 2024. Elastic Sched-

uling for Graceful Degradation of Mixed-Criticality Systems. In The 32nd
International Conference on Real-Time Networks and Systems (RTNS 2024),
November 07–08, 2024, Porto, Portugal. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3696355.3699701

1 Introduction
A mixed-criticality real-time system (e.g., a drone using a Fast In-

tegrated Mobility Spectrometer [26, 29] to map the extent of an

aerosol plume, or a high-altitude balloon flying the ADAPT tele-

scope [4, 14, 22, 27] to detect and localize gamma-ray bursts) must

distinguish high-criticality tasks whose schedulability must be as-

sured for system safety, from low-criticality tasks that may be safely

dropped if unavoidable due to system overload. For example, drone

navigation tasks to avoid flying into obstacles are high-criticality; in

contrast, jobs of tasks that determine the aerosol plume’s extent may

This work is licensed under a Creative Commons Attribution International

4.0 License.

RTNS 2024, November 07–08, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1724-6/24/11

https://doi.org/10.1145/3696355.3699701

be dropped safely, and thus are low-criticality, even though they are

essential to the drone’s mission. Similarly, control tasks to maintain

balloon stability and telescope temperature are high-criticality; in

contrast, jobs of tasks that collect and analyze gamma-ray data are

low-criticality.

Furthermore, within each criticality level, some tasks may be

more important to the system than others. For example, tasks in-

volved with mapping the aerosol plume may be more important

than tasks that collect and report mission statistics for post-hoc anal-

ysis: dropping the latter would have a lesser effect on the mission’s

outcome than dropping the former. Similarly, tasks for reading out

sensors that measure gamma-ray interactions in the telescope may

be more important than high-level analysis tasks; dropping all of

the former would prevent the latter from executing anyway.

What is needed then is a means to support graceful degradation

of system outcomes while still maintaining system safety by re-

ducing the number of low-criticality jobs that are dropped. In this

paper, we propose a new Inelastic Graceful Earliest Deadline First

with Virtual Deadlines (IG-EDF-VD) algorithm, which considers

the importance of tasks as well as their criticality. When a mode

switch is triggered by an overrun of a high-criticality task, our algo-

rithm only drops jobs of the lowest importance low-criticality tasks

as needed to maintain schedulability. We note that the IG-EDF-VD

algorithm is the first to integrate importance with dynamic-priority

mixed-criticality scheduling (specifically EDF-VD).

Additionally, in practice, some tasks also may be elastic. Such
tasks may, with varying degrees of flexibility, reduce their utiliza-

tions in a continuous range by reducing their workloads (e.g., the

amount of input data processed, the number of iterations of a refine-

ment step). Elastic real-time scheduling models allow for principled

compression of elastic task utilizations until the cumulative utiliza-

tion falls below the utilization bound while guaranteeing that each

task’s utilization remains above some specified minimum value [5].

This, in turn, offers further opportunities for graceful degradation

as an alternative to dropping jobs by reducing task utilizations

across a mode switch to a higher criticality level.

To this end, we propose an Elastic Graceful Earliest Deadline

First with Virtual Deadlines (EG-EDF-VD) algorithm that attempts

to compress the utilizations of workload-elastic tasks to minimize

the number of tasks that must be suspended across a criticality

mode switch. Intuitively, the algorithm determines the minimum

number of tasks (in order of importance) to suspend when all task

utilizations are compressed to their minimum values. Then, given

the set of tasks that must be dropped, the algorithm applies elastic

scheduling’s principled compression to achieve the least degrada-
tion (i.e., reduction in task utilizations) to remain schedulable. As

https://orcid.org/0009-0004-0351-4127
https://orcid.org/0000-0003-2318-7763
https://orcid.org/0000-0003-0366-8586
https://doi.org/10.1145/3696355.3699701
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3696355.3699701

RTNS 2024, November 07–08, 2024, Porto, Portugal Sun, Sudvarg, and Gill.

wewill show, in many cases, this allows fewer tasks to be suspended

compared to IG-EDF-VD.

The remainder of the paper is organized as follows. Section 2

discusses related work. Section 3 presents the considered system

models. Section 4 introduces the IG-EDF-VD algorithm, and Sec-

tion 5 introduces the EG-EDF-VD algorithm. Section 6 evaluates

these algorithms using randomly-generated synthetic task sets.

Section 7 concludes the paper and discusses directions for future

work.

2 Related Work
This paper considers systems of implicit-deadline sporadic real-

time tasks scheduled on a single processor core. In this section,

we outline relevant prior work in this area, including for mixed-

criticality and elastic real-time task systems. In Liu and Layland’s

classic three-parameter task model [17], a system is schedulable on

a preemptive uniprocessor using the Earliest Deadline First (EDF)

algorithm if the system’s total utilization demand does not exceed

1.

2.1 Mixed-Criticality Systems
In safety-critical systems, statutory certification authorities may re-

quire that task worst-case execution times (WCETs) (and therefore,

utilizations) be certified to a high level of assurance. The resulting

utilization demand may be pessimistic, and not indicative of sys-

tem load under common-case behavior. This may be too restrictive,

especially in mixed-criticality systems that integrate both safety-

critical and non-critical tasks. To accommodate both common- and

worst-case behaviors, Vestal proposed to classify tasks according

to their criticality levels [28]. Criticality may be defined according

to a variety of safety standards, such as ISO 26262 [16] for the au-

tomotive domain, DO 178C [7] for aeronautics, or IEC 61508 [15]

for generic purposes. In this paper, we restrict our analysis to two

levels: low and high criticality.

Under Vestal’s model, each high-criticality task is character-

ized with two WCETs: one representing common-case behavior

at the certification level demanded by low-criticality tasks, and

one representing the worst-case behavior under the assurances of

the high-criticality certification level. If a job of a high-criticality

task continues to execute beyond its low-criticality WCET, the sys-

tem switches into high-criticality mode, and jobs of low-criticality

tasks are dropped. This allows high-criticality tasks to meet their

deadlines even under their more pessimistic high-criticality WCETs

while allowing all low-criticality tasks to meet their deadlines if

the system remains in low-criticality mode.

Earliest Deadline First with Virtual Deadlines (EDF-VD) [3] is

a dynamic-priority scheduling algorithm for mixed-criticality sys-

tems. EDF-VD has been proven to be speedup-optimal [1] and out-

performs other mixed-criticality scheduling algorithms in terms of

its acceptance ratio [8, 9]. Under EDF-VD,𝑈 LO

ΓLO
denotes the total uti-

lization of low-criticality tasks; 𝑈 LO

ΓHI
denotes the total utilization of

high-criticality tasks according to their low-criticality WCETs, and

𝑈HI

ΓHI
denotes their total utilization according to their high-criticality

(most pessimistic) WCETs. Namely, for each of 𝜒 ∈ {LO,HI} and

Γ𝑘 ∈ {ΓLO, ΓHI}, we denote:

𝑈
𝜒

Γ𝑘
=

∑︁
𝜏𝑖 ∈Γ𝑘

𝑈
𝜒

𝑖

Tasks are scheduled according to EDF, but high-criticality tasks

𝜏𝑖 are each assigned a virtual deadline 𝑇𝑖 ← 𝑥𝑇𝑖 where 𝑇𝑖 is the

task’s period and 𝑥 is computed as

𝑥 ←
𝑈 LO

ΓHI

1 −𝑈 LO

ΓLO

(1)

If a high-criticality task overruns its low-criticality WCET, jobs

of all low-criticality tasks are dropped, and high-criticality task

deadlines are set to their original 𝑇𝑖 values. In [1], Baruah et al.

prove that a mixed-criticality system is schedulable under EDF-VD

if

𝑥𝑈 LO

ΓLO
+𝑈HI

ΓHI
≤ 1 (2)

In this paper, we refer to the following as the EDF-VD schedula-
bility function for a mixed-criticality system Γ:

B(Γ) =
𝑈 LO

ΓHI

1 −𝑈 LO

ΓLO

·𝑈 LO

ΓLO
+𝑈HI

ΓHI
(3)

From Equations 1 and 2, a mixed-criticality system is schedulable

under EDF-VD if B(Γ) ≤ 1.

2.2 Importance
A key distinction can be made between a task’s criticality, which is

used to validate mixed-criticality systems according to the safety

standards noted in Section 2.1, and its importance [11, 12]. Flem-

ing and Burns observed that dropping jobs of all low-criticality

tasks is unacceptable for many practical applications and proposed

suspending low-criticality tasks based on their importance, which

is specified by a system developer to capture each task’s relative

contribution to the system’s performance or other objectives [12].

For example, consider a hobbyist drone in “follow-me” mode,

with an objective to follow and film a moving target. In this case,

flight control tasks are high-criticality, since missing a deadline

may result in a crash. In contrast, the video-related tasks are low-

criticality. Compared to the target tracking task, the video capturing

task is more important, since missing a deadline of the latter results

in dropped frames, whereas missing a deadline of the former still

retains video frames, but the target might be off-center or missing.

As a second example, consider a high-energy nuclear physics

detector or astrophysics telescope designed to read and process

data from particle interactions in the instrument. Such instruments

are deployed in diverse environments, where critical control tasks

maintain, e.g., stability of a flown telescope, or temperatures and

voltages in sensitive electronics; missing a deadline might result

in expensive damage. Low-criticality data collection tasks are still

important to the mission; for example, real-time gamma-ray trajec-

tory reconstruction and localization aboard the ADAPT telescope

will enable rapid follow-up observations of gamma-ray bursts by

other telescopes [25]. But compared to the localization task, the

reconstruction task is more important, as reconstructed data is

necessary for subsequent localization.

Our work in this paper adopts Fleming and Burns’ convention

of representing importance as a strict total order over the set of

Elastic Scheduling for Graceful Degradation of Mixed-Criticality Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

tasks {𝜏𝑖 } using an ordinal, but not interval, measure: it does not

necessarily support addition or other arithmetic operations on its

values, nor does it capture any notion of multiple less important

tasks being more important in combination than a single task of

higher importance. We note that an interval importance may be

applicable to many real-world applications, but it is left to future

work.

Fleming and Burns used this notion of importance to reduce the

number of tasks suspended across a mode switch in a fixed-priority

mixed-criticality model [12]. Our paper is the first to integrate it

with a dynamic-priority schedulingmodel—specifically, we consider

EDF-VD [3].

2.3 Adaptability and Elastic Scheduling
Several other alternatives to job and task dropping have been pro-

posed. For instance, the imprecise mixed-criticality model allows

low-criticality jobs to run at a reduced utilization instead of being

dropped [18].

Another example is Su and Zhu’s elastic task model for unipro-

cessor mixed-criticality systems, which characterizes each low-

criticality task with a maximum period that reflects its minimum

service requirement [21]. If the system switches to a high-criticality

mode, periods are expanded to these values (with opportunities

for early releases given sufficient slack). Compared to the impre-

cise mixed-criticality model, this elastic model is more adaptive,

with multiple early release points for slack reclamation. We argue

that while this is an adaptive model, it is not quite a truly elastic
model because low-criticality tasks still have their utilizations fully

degraded to their minimum acceptable values.

The elastic model of Buttazzo et al. for implicit-deadline sporadic

tasks on a uniprocessor [5, 6] characterizes each task 𝜏𝑖 with a

continuous range [𝑈min

𝑖
,𝑈max

𝑖
] from which its utilization𝑈𝑖 can be

assigned. Under normal operation, tasks execute at their maximum

utilizations𝑈max

𝑖
. Each taskmay also be assigned an elastic constant

𝐸𝑖 representing “the flexibility of the task to vary its utilization” [5].

We note that a task with 𝐸𝑖 = 0 (equivalently,𝑈min

𝑖
= 𝑈max

𝑖
) cannot

be compressed and is referred to as an inelastic task. Conversely, a
task is referred to as an elastic task if 𝐸𝑖 > 0.

If the system becomes overloaded, task utilizations may be re-

duced by increasing their periods (period-elasticity) or decreasing

their execution times (workload-elasticity [20]). Under Buttazzo’s

model, task utilizations are compressed from their maximum values

𝑈max

𝑖
in proportion to their elastic constants 𝐸𝑖 until the system

becomes schedulable. Specifically, this means that for all elastic

tasks 𝜏𝑖 and 𝜏 𝑗 with 𝑈𝑖 > 𝑈min

𝑖
and 𝑈 𝑗 > 𝑈min

𝑗
, the following

relationship must be satisfied:(
𝑈max

𝑖
−𝑈𝑖

𝐸𝑖

)
=

(
𝑈max

𝑗
−𝑈 𝑗

𝐸 𝑗

)
(4)

In [19], Orr and Baruah introduce a term Φ to capture this equi-

librium value; each task’s utilization value is thus:

𝑈𝑖 (Φ)
def

= max

(
𝑈max

𝑖 − Φ · 𝐸𝑖 ,𝑈min

𝑖

)
(5)

We refer to Φ as the system compression level.
If an elastic task’s utilization reaches its minimum, it is not

reduced further, although other elastic tasks may be compressed

more if needed to reach schedulability. In [23, 24], Sudvarg et al.

assign a parameter 𝜙𝑖 to each elastic task, representing the system

compression level needed for an elastic task to reach its minimum

utilization:

𝜙𝑖
def

=
𝑈max

𝑖
−𝑈min

𝑖

𝐸𝑖
(6)

We refer to𝜙𝑖 as themaximum compression level of task 𝜏𝑖 . Rather
than forcing each low-criticality task to execute at its minimum

utilization if the system criticality level increases, as in Su and

Zhu’s model [21] where tasks execute at their maximum periods,

we suggest instead that utilizations should be compressed only to

the extent necessary to accommodate low-criticality task execu-

tion in high-criticality mode. In this paper, we propose an elastic

mixed-criticality model for workload-elastic tasks and present an

algorithm to minimize the number of low-criticality tasks dropped

while compressing task workloads as little as possible to still guar-

antee schedulability across a mode switch.

3 System Model
In this paper, we consider two systemmodels. Section 4 uses Vestal’s

classic preemptive mixed-criticality model from [28] with an addi-

tional ordinal importance parameter assigned to each low-criticality

task per Fleming and Burns [12]. Section 5 extends this model to

Buttazzo’s elastic scheduling [5, 6] by additionally parameterizing

each task with a continuous range of allowed utilizations and an

elasticity.

3.1 Mixed-Criticality with Importance
In traditional mixed-criticality systems, if a job of a high-criticality

task executes for time𝐶LO

𝑖
without completing, a system criticality

mode switch is triggered. In this high-criticality mode, jobs of all

low-criticality tasks are discarded.

In Section 4, we introduce a scheduling algorithm that allows,

to the extent possible, low-criticality tasks to continue execut-

ing across a mode switch. It assumes a finite set Γ of mixed-

criticality, implicit-deadline, sporadic tasks executing on a single-

core processor. Each task 𝜏𝑖 is characterized by the tuple 𝜏𝑖 =

(𝜒𝑖 , 𝐼𝑖 ,𝑇𝑖 ,𝑈 LO

𝑖
,𝑈HI

𝑖
), where:

• 𝜒𝑖 ∈ {LO, HI} denotes the task’s criticality.
• 𝐼𝑖 denotes the unique importance of a low-criticality task, i.e,

∀𝜏𝑖 , 𝜏 𝑗 where 𝑖 ≠ 𝑗 , 𝐼𝑖 ≠ 𝐼 𝑗 . Note that, as in [12], importance is

ordinal but not interval; one should not perform arithmetic on

the value. After a mode switch, our algorithm suspends low-

criticality tasks in order of increasing importance until the re-

maining tasks are schedulable.

• 𝑇𝑖 denotes the task’s period or minimum inter-arrival time.

• 𝑈 LO

𝑖
denotes the task’s utilization under low-criticality mode.

From this, the worst-case execution time in low-criticality mode

𝐶LO

𝑖
= 𝑈 LO

𝑖
·𝑇𝑖 can be derived.

• 𝑈HI

𝑖
denotes the task’s utilization under high-criticality mode.

For high-criticality tasks,𝑈HI

𝑖
≥ 𝑈 LO

𝑖
. For low-criticality tasks

not suspended across a mode switch, 𝑈HI

𝑖
= 𝑈 LO

𝑖
. Similarly,

𝐶HI

𝑖
= 𝑈HI

𝑖
·𝑇𝑖 can be derived.

RTNS 2024, November 07–08, 2024, Porto, Portugal Sun, Sudvarg, and Gill.

We denote the set of high-criticality tasks as ΓHI and the set of

low-criticality tasks as ΓLO.

3.2 Elastic Mixed-Criticality with Importance
An intuitive extension of the above model to Buttazzo’s elastic

scheduling [5, 6] for workload-elastic tasks is to characterize each

task as

𝜏𝑖 = (𝜒𝑖 , 𝐼𝑖 ,𝑇𝑖 ,𝑈 LO,min

𝑖
,𝑈

LO,max

𝑖
,𝑈

HI,min

𝑖
,𝑈

HI,max

𝑖
, 𝐸LO𝑖 , 𝐸HI𝑖)

where

• 𝜒𝑖 ∈ {LO, HI} denotes the task’s criticality.
• 𝐼𝑖 denotes ordinal importance, as in Section 3.1.

• 𝑇𝑖 again denotes the task’s period.

•
[
𝑈
LO, min

𝑖
,𝑈

LO, max

𝑖

]
denotes the continuous range of allowed

values from which the task’s assigned utilization 𝑈 LO

𝑖
may be

selected under low-criticality mode.

•
[
𝑈
HI, min

𝑖
,𝑈

HI, max

𝑖

]
denotes the continuous range of allowed

values from which the task’s assigned utilization 𝑈HI

𝑖
may be

selected under high-criticality mode.

• 𝐸LO
𝑖

and 𝐸HI
𝑖

denote the elasticity of the task under low- and

high-criticality modes.

A task 𝜏𝑖 has 𝐸
LO

𝑖
= 𝐸HI

𝑖
= 0 if it is inelastic, while 𝐸LO

𝑖
> 0 and

𝐸HI
𝑖

> 0 if the task is elastic.
For workload-elastic tasks, which we consider in this paper,

the period 𝑇𝑖 remains constant. From the other parameters, the

task’s WCET values can be derived as 𝐶
𝜒,min

𝑖
= 𝑈

𝜒,min

𝑖
·𝑇𝑖 and

𝐶
𝜒,max

𝑖
= 𝑈

𝜒,max

𝑖
·𝑇𝑖 .

We extend Orr and Baruah’s definition of the system compres-

sion level (Equation 5) to this system model:

𝑈
𝜒

𝑖
(Φ) def= max

(
𝑈

𝜒,max

𝑖
− Φ · 𝐸𝜒

𝑖
,𝑈

𝜒,min

𝑖

)
(7)

Similarly, we can extend Sudvarg’s definition of the maximum

compression level of a task (Equation 6):

𝜙
𝜒

𝑖

def

=
𝑈

𝜒,max

𝑖
−𝑈 𝜒,min

𝑖

𝐸
𝜒

𝑖

(8)

In this paper, we restrict 𝜙𝑖 to remain constant across criticality

levels. This guarantees two properties that are necessary to the

development of the EG-EDF-VD algorithm. First, for a given system

compression level Φ, it guarantees that a task that is fully com-

pressed to its minimum utilization 𝑈
𝜒,min

𝑖
in one criticality level

remains so in the other level. Second, it guarantees that elastic tasks

do not exceed their budgets upon a mode switch. These properties

are further motivated and proven in Section 5.

By rearranging the definition of 𝜙𝑖 , we can express the elasticity

at each criticality level as
𝐸LO
𝑖

=
𝑈
LO, max

𝑖
−𝑈 LO, min

𝑖

𝜙𝑖

𝐸HI
𝑖

=
𝑈
HI, max

𝑖
−𝑈HI, min

𝑖

𝜙𝑖

(9)

By doing so, we may re-parameterize each task 𝜏𝑖 with one fewer

parameter as

𝜏𝑖 = (𝜒𝑖 , 𝐼𝑖 ,𝑇𝑖 ,𝑈 LO,min

𝑖
,𝑈

LO,max

𝑖
,𝑈

HI,min

𝑖
,𝑈

HI,max

𝑖
, 𝜙𝑖)

We motivate this model by illustrating how elasticity may be

orthogonal to criticality for workload-elastic tasks.

Example 1. Consider a high-criticality iterative refinement task 𝜏𝑖
that runs every 200𝑚𝑠 , requiring 4 iterations at minimum and ideally
10. The WCET of one iteration is 5𝑚𝑠 under low-criticality and 10𝑚𝑠

under high-criticality for certification.

We can characterize task 𝜏𝑖 with 𝑇𝑖 = 200𝑚𝑠 , 𝑈
LO,min

𝑖
= 0.1,

𝑈
HI,min

𝑖
= 0.2, 𝑈

LO,max

𝑖
= 0.25, 𝑈

HI,max

𝑖
= 0.5, and 𝜙𝑖 = 6. Then

the allowed range of the task’s WCET is [20𝑚𝑠, 50𝑚𝑠] under low-
criticality mode and [40𝑚𝑠, 100𝑚𝑠] under high-criticality mode.

Suppose the EG-EDF-VD algorithm determines that a system com-

pression level Φ = 2 guarantees schedulability. Then utilizations are

assigned as 𝑈 LO

𝑖
(Φ) = 0.2 and 𝑈HI

𝑖
(Φ) = 0.4, with corresponding

execution times 𝐶LO

𝑖
= 40𝑚𝑠 and 𝐶HI

𝑖
= 80𝑚𝑠 guaranteeing that at

least 8 iterations can complete in either criticality level.

We note that, although the number of iterations completed rep-

resents a discrete value, it is still worthwhile to assign a contin-
uous range of allowed utilizations. For example, for Φ = 2.5, the

task in the above example would have execution time budgets

𝐶LO

𝑖
= 37.5𝑚𝑠 and 𝐶HI

𝑖
= 75𝑚𝑠 , guaranteeing completion of 7 itera-

tions. However, since workloads are characterized according to the

WCET, faster execution might allow 8 iterations to complete; this

becomes more likely as utilization is continuously increased.

4 Inelastic Graceful EDF-VD
This section introduces the Inelastic Graceful EDF-VD (IG-EDF-
VD) algorithm, which extends the EDF-VD algorithm by incorporat-

ing ordinal importance according to the model defined in Section 3.1.

The idea is to find the maximal set, in order of importance, of low-

criticality tasks that can continue to execute in high-criticalitymode.

In Section 4.1, we first motivate the algorithm with an example.

Next, we describe the IG-EDF-VD algorithm in Section 4.2. Finally,

we analyze the schedulability of the IG-EDF-VD scheduling scheme

from an adaption of the EDF-VD schedulability test in Section 4.3.

4.1 Motivation
Example 2. Consider the implicit-deadline task system Γ whose

parameters are shown in Table 1.

𝜒𝑖 𝐼𝑖 𝑇𝑖 𝑈 LO

𝑖
𝑈HI

𝑖

𝜏1 HI - 91.735 0.255 0.518

𝜏2 HI - 4.286 0.095 0.132

𝜏3 LO 1 1.710 0.245 0.245

𝜏4 LO 2 92.718 0.111 0.111

𝜏5 LO 3 2.300 0.094 0.094

Table 1: Sample inelastic taskset

Applying the EDF-VD schedulability function from Equation 3,

we get

B(Γ) = 0.35

1 − 0.45 · 0.45 + 0.65 ≈ 0.936

Since B(Γ) ≤ 1, the task set Γ is schedulable under EDF-VD.

Elastic Scheduling for Graceful Degradation of Mixed-Criticality Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

Algorithm 1 IG-EDF-VD schedulability test

Require: An implicit-deadline sporadic task system Γ where ΓLO
is sorted in ascending order of importance.

Ensure: An IG-EDF-VD schedule is feasible for the returned set

of undroppable tasks.

1: if 𝑈 LO

ΓLO
+𝑈HI

ΓHI
≤ 1 then return ΓLO ⊲ Attempt EDF

2: ΓUD ← ΓLO
3: ΓDR ← ∅
4: while ΓUD ≠ ∅ do
5: Move the least important task 𝜏𝑖 from ΓUD to ΓDR
6: if B(Γ, ΓUD) ≤ 1 then return ΓUD ⊲ Per Eqn. 10

7: end while
8: return Infeasible

Now consider a task set Γ′ that is identical to Γ except that 𝜏5
is a high-criticality task instead of a low-criticality task. Applying

the same schedulability function, we get

B(Γ′) = 0.444

1 − 0.356 · 0.356 + 0.744 ≈ 0.989

Since B(Γ′) ≤ 1, the task set Γ′ is also schedulable.

To minimize the number of low-criticality tasks dropped, we

propose IG-EDF-VD, as outlined in Algorithm 1. It finds themaximal

subset (in order of importance) of undroppable low-criticality tasks

ΓUD that can be treated as high-criticality tasks while an EDF-VD

schedule remains feasible.

4.2 IG-EDF-VD Algorithm
Like EDF-VD, the IG-EDF-VD algorithm first performs a schedu-

lability test and computes a modified period 𝑇𝑖 ≤ 𝑇𝑖 . However,

IG-EDF-VD also partitions the low-criticality tasks into subsets

of undroppable and droppable tasks — ΓUD and ΓDR — based on

importance. Any task in ΓUD is always more important than any

task in ΓDR, i.e, ∀𝜏𝑖 ∈ ΓUD and ∀𝜏 𝑗 ∈ ΓDR, 𝐼𝑖 > 𝐼 𝑗 . Tasks in ΓUD
are treated as if they are high-criticality. The algorithm finds the

maximal assignment of tasks to set ΓUD (in order of importance)

for which schedulability remains guaranteed.

During runtime, the IG-EDF-VD algorithm assigns virtual dead-

lines 𝑡𝑎 + 𝑇𝑖 if 𝜏𝑖 ∈ ΓHI or 𝜏𝑖 ∈ ΓUD and 𝑡𝑎 + 𝑇𝑖 if 𝜏𝑖 ∈ ΓDR to

tasks 𝜏𝑖 arriving at time 𝑡𝑎 . If a high-criticality job executes beyond

its low-criticality WCET without signaling that it has completed

execution:

• All droppable tasks’ jobs are immediately suspended.

• Subsequent run-time scheduling of all undroppable and high-

criticality tasks continues to be done according to EDF, but actual

job deadlines 𝑡𝑎 +𝑇𝑖 are used.
Note that even though the undroppable tasks are treated as

high-criticality tasks, they will never trigger an overrun since their

low-criticality WCET is the same as their high-criticality WCET,

which they will never exceed.

For each of 𝜒 ∈ {LO,HI} and Γ𝑘 ∈ {ΓUD, ΓDR}, we define a

utilization parameter as follows:

𝑈
𝜒

Γ𝑘
=

∑︁
𝜏𝑖 ∈Γ𝑘

𝑈
𝜒

𝑖

With that, we define the IG-EDF-VD schedulability function for a

mixed-criticality system Γ as follows:

B(Γ, ΓUD) =
𝑈 LO

ΓHI
+𝑈 LO

ΓUD

1 −𝑈 LO

ΓDR

·𝑈 LO

ΓDR
+𝑈HI

ΓUD
+𝑈HI

ΓHI
(10)

Note that when ΓUD = ∅, we have ΓDR = ΓLO, and the schedula-

bility function is equivalent to that of EDF-VD. As we will show in

Section 4.3, this function bounds the IG-EDF-VD algorithm, i.e., if

B(Γ, ΓUD) ≤ 1, then a schedule for the system Γ is feasible under

IG-EDF-VD.

0.0 0.1 0.2 0.3 0.4
ULO

ΓDR

0.950

0.975

1.000

1.025

1.050

1.075

1.100

B(
Γ
,Γ

U
D

)

Figure 1: Schedulability function against utilization of drop-
pable tasks of a sample inelastic task set

The schedulability function of the task set in Example 2 is shown

in Figure 1. Each point represents one partition of the task set. The

x-axis represents the value 𝑈 LO

ΓDR
for the corresponding partition,

while the y-axis represents the schedulability function B(Γ, ΓUD) of
that partition. A horizontal reference line shows the schedulability

bound where B(Γ, ΓUD) = 1. Any partition that lies on or below

the reference line is schedulable under IG-EDF-VD; those above the

line are not deemed schedulable.

One may observe in Figure 1 that the schedulability function

is monotonically decreasing as 𝑈 LO

ΓDR
increases, which we prove in

Lemma 4.4 of Section 4.3. This means that as tasks move from ΓUD to

ΓDR,𝑈
LO

ΓDR
increases and thus the schedulability function decreases.

Therefore, we consider dropping jobs of low-criticality tasks via

linear search from the least to most important task.

4.3 IG-EDF-VD Schedulability Analysis
Since the algorithm treats undroppable tasks ΓUD as if they are high-

criticality tasks, we can consider the set Γ of tasks scheduled under

IG-EDF-VD to be equivalent to a set Γ′ scheduled by traditional

EDF-VD where

𝑈 ′HIΓHI = 𝑈HI

ΓHI
+𝑈 LO

ΓUD
(11)

𝑈 ′LOΓHI = 𝑈 LO

ΓHI
+𝑈 LO

ΓUD
(12)

𝑈 ′LOΓLO = 𝑈 LO

ΓDR
(13)

We use this to prove the sufficient schedulability condition used

by IG-EDF-VD’s analysis.

RTNS 2024, November 07–08, 2024, Porto, Portugal Sun, Sudvarg, and Gill.

Lemma 4.1. The following is sufficient for ensuring IG-EDF-VD
successfully schedules all low-criticality behaviors of Γ.

𝑥 ≥
𝑈 LO
ΓHI
+𝑈 LO

ΓUD

1 −𝑈 LO
ΓDR

(14)

Proof. Applying the schedulability condition for EDF-VD [1,

Theorem 1], the following ensures IG-EDF-VD successfully sched-

ules all low-criticality behaviors of Γ.

𝑥 ≥
𝑈 ′LOΓHI

1 −𝑈 ′LOΓLO
Equations 12 and 13 imply that

𝑥 ≥
𝑈 LO

ΓHI
+𝑈 LO

ΓUD

1 −𝑈 LO

ΓDR

□

Therefore, Algorithm 1 sets 𝑥 =
𝑈 LO

Γ
HI

+𝑈 LO

Γ
UD

1−𝑈 LO

Γ
DR

to ensure it success-

fully schedules all low-criticality behaviors of Γ.

Lemma 4.2. The following is sufficient for ensuring IG-EDF-VD
successfully schedules all high-criticality behaviors of Γ.

𝑥𝑈 LO
ΓDR
+𝑈HI

ΓHI
+𝑈 LO

ΓUD
≤ 1 (15)

Proof. Applying [1, Theorem 2], the following condition is suf-

ficient for ensuring IG-EDF-VD successfully schedules all high-

criticality behaviors of Γ.

𝑥𝑈 ′LOΓLO +𝑈
′HI
ΓHI ≤ 1

Equations 11 and 13 imply that

𝑥𝑈 LO

ΓDR
+𝑈HI

ΓHI
+𝑈 LO

ΓUD
≤ 1 □

As such, Algorithm 1 will always ensure IG-EDF-VD successfully

schedules all high-criticality behaviors of Γ. Now we can prove

the IG-EDF-VD schedulability function defined in Section 4.2 by

combining Lemma 4.1 and Lemma 4.2:

Theorem 4.3. If the IG-EDF-VD schedulability function

B(Γ, ΓUD) ≤ 1

then a schedule for the system Γ is feasible under IG-EDF-VD.

Proof. For 𝑥 =
𝑈 LO

Γ
HI

+𝑈 LO

Γ
UD

1−𝑈 LO

Γ
DR

, IG-EDF-VD successfully schedules

all low-criticality behaviors of Γ from Lemma 4.1. Now we have

𝑥𝑈 LO

ΓDR
+ 𝑈HI

ΓHI
+ 𝑈 LO

ΓUD
≤ 1, so IG-EDF-VD successfully schedules

all high-criticality behaviors of Γ from Lemma 4.2. Therefore, a

schedule for the system Γ is feasible. □

Now that we have shown a sufficient schedulability function, we

prove a result related to the observation we made in Section 4.2:

as we move tasks from ΓUD to ΓDR, the schedulability function

decreases. Therefore, it is valid to consider dropping jobs of low-

criticality tasks in order from the least important to the most im-

portant task, terminating once a schedulable configuration is found.

To prove this, we make use of the following properties. First, we

assume𝑈 LO

ΓHI
+𝑈 LO

ΓLO
≤ 1; otherwise, the system is trivially unschedu-

lable. Second, we assume𝑈 LO

ΓLO
< 1; otherwise, no critical task can

be scheduled even in low-criticality mode.

Lemma 4.4. For a task set Γ with 𝑈 LO
ΓHI
+𝑈 LO

ΓLO
≤ 1 and 𝑈 LO

ΓDR
< 1,

the IG-EDF-VD schedulability function B(Γ, ΓUD) is monotonically
non-increasing with respect to 𝑈 LO

ΓDR
as tasks are moved from ΓUD to

ΓDR.

Proof. We prove this by showing that the derivative with re-

spect to 𝑈 LO

ΓDR
is non-positive for Γ. Since 𝑈HI

𝑖
= 𝑈 LO

𝑖
for all low-

criticality tasks,𝑈HI

ΓUD
= 𝑈 LO

ΓUD
. This implies that the schedulability

function B(Γ, ΓUD) is equivalent to:
𝑈 LO

ΓHI
+𝑈 LO

ΓUD

1 −𝑈 LO

ΓDR

·𝑈 LO

ΓDR
+𝑈 LO

ΓUD
+𝑈HI

ΓHI

Since we partitioned ΓLO into ΓDR and ΓUD, the total utilization of
ΓDR and ΓUD must equal that of ΓLO. Then from𝑈 LO

ΓUD
= 𝑈 LO

ΓLO
−𝑈 LO

ΓDR
,

we have:

B(Γ, ΓUD) =
𝑈 LO

ΓHI
+ (𝑈 LO

ΓLO
−𝑈 LO

ΓDR
)

1 −𝑈 LO

ΓDR

·𝑈 LO

ΓDR
+ (𝑈 LO

ΓLO
−𝑈 LO

ΓDR
) +𝑈HI

ΓHI

As the set of low- and high-criticality tasks does not change with

respect to the partition of low-criticality tasks, we may consider

𝑈 LO

ΓLO
, 𝑈 LO

ΓHI
, and 𝑈HI

ΓHI
to be constants. Therefore, we can rearrange

the schedulability function as follows:

(𝑈 LO

ΓHI
+𝑈 LO

ΓLO
) ·

𝑈 LO

ΓDR

1 −𝑈 LO

ΓDR

−
(𝑈 LO

ΓDR
)2

1 −𝑈 LO

ΓDR

−𝑈 LO

ΓDR
+ (𝑈 LO

ΓLO
+𝑈HI

ΓHI
)

Taking the derivative, we get:

𝑑

𝑑𝑈 LO

ΓDR

B(Γ, ΓUD)

=(𝑈 LO

ΓHI
+𝑈 LO

ΓLO
) · 1

(1 −𝑈 LO

ΓDR
)2
− (1

(1 −𝑈 LO

ΓDR
)2
− 1) − 1

=
𝑈 LO

ΓHI
+𝑈 LO

ΓLO
− 1

(1 −𝑈 LO

ΓDR
)2

Since 𝑈 LO

ΓHI
+𝑈 LO

ΓLO
≤ 1, the numerator is non-positive. Also, as

𝑈 LO

ΓDR
≠ 1, the denominator must be positive. Therefore, the de-

rivative must be non-positive, so the schedulability function is

monotonically non-increasing with𝑈 LO

ΓDR
. □

Theorem 4.5. Let Γ be a task set and ΓUD, ΓDR represent a partition
of its low-criticality tasks. Let Γ′UD, Γ′DR be another partition where
𝜏𝑖 is moved from ΓUD to ΓDR, i.e, Γ′UD = ΓUD \ 𝜏𝑖 and Γ′DR = ΓDR ∪ 𝜏𝑖 .
Then B(Γ, Γ′UD) ≤ 1 if B(Γ, ΓUD) ≤ 1.

Proof. Clearly, if B(Γ, ΓUD) ≤ 1 then𝑈 LO

ΓHI
+𝑈 LO

ΓLO
≤ 1. Applying

Lemma 4.4, we have

B(Γ, Γ′UD) ≤ B(Γ, ΓUD)
By the transitive property, we get

B(Γ, Γ′UD) ≤ 1 □

Elastic Scheduling for Graceful Degradation of Mixed-Criticality Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

𝜒𝑖 𝐼𝑖 𝑇𝑖 𝑈
LO,min

𝑖
𝑈
LO,max

𝑖
𝑈
HI,min

𝑖
𝑈
HI,max

𝑖
𝜙𝑖

𝜏1 HI - 91.735 0.255 0.255 0.518 0.518 -

𝜏2 HI - 4.286 0.095 0.095 0.132 0.132 -

𝜏3 LO 1 1.710 0.225 0.245 0.225 0.245 0.030

𝜏4 LO 2 92.718 0.082 0.111 0.082 0.111 4.028

𝜏5 LO 3 2.300 0.092 0.094 0.092 0.094 0.002

Table 2: Sample elastic taskset

Therefore, a schedule for Γ will still be feasible if a task is moved

from ΓUD to ΓDR per Theorem 4.3.

5 EG-EDF-VD
This section introduces the Elastic Graceful EDF-VD (EG-EDF-VD)

algorithm, which extends the IG-EDF-VD algorithm from Section 4

to the elastic system model in Section 3.2. The idea is still to find

the maximal set of low-criticality tasks that can continue to execute

in high-criticality mode. EG-EDF-VD takes advantage of elasticity

to do so, compressing task utilizations to the extent necessary to

further reduce the number of suspended tasks.

We first motivate this algorithm in Section 5.1 by considering an

elastic version of Example 2. We then introduce the EG-EDF-VD

algorithm in Section 5.2. In Section 5.3, we prove several properties

of our elastic mixed-criticality system model; these are leveraged

in Section 5.4 to develop an algorithm that efficiently finds the

minimum system compression level Φ deemed schedulable. In Sec-

tion 5.5, we discuss how EG-EDF-VD schedules tasks across a mode

switch.

5.1 Motivation
Example 3. Let us revisit Example 2. Now, all low-criticality tasks

are also elastic, with parameters shown in Table 2.

Let Γmin
denote the task system where all elastic tasks are fully

compressed (i.e., Φ ≥ max𝑖 {𝜙𝑖 }) and Γmax
denote the task system

where no tasks are compressed at all (i.e.,Φ = 0), which is equivalent

to the inelastic system Γ in Example 2.

Let us treat tasks 𝜏4 and 𝜏5 as high-criticality, i.e., ΓUD = {𝜏4, 𝜏5}.
Applying the IG-EDF-VD schedulability function,

B(Γmax, ΓUD) =
0.555

1 − 0.245 · 0.245 + 0.855 ≈ 1.035

and

B(Γmin, ΓUD) =
0.524

1 − 0.225 · 0.225 + 0.824 ≈ 0.976

As B(Γmax, ΓUD) > 1, IG-EDF-VD does not guarantee schedula-

bility. However, the fully compressed system is schedulable since

B(Γmin, ΓUD) ≤ 1. Therefore, we propose the EG-EDF-VD algo-

rithm, which extends IG-EDF-VD by leveraging elasticity to drop

even fewer tasks.

5.2 EG-EDF-VD Algorithm
The primary goal of the EG-EDF-VD algorithm is still to find

the maximal subset (in order of importance) of undroppable low-

criticality tasks ΓUD. It first compresses all elastic tasks to their

minimum utilizations, then uses Algorithm 1 to find the maximal

resulting assignment of tasks to ΓUD. Once this is found, EG-EDF-
VD finds the minimum system compression level Φ for which the

0.0 0.1 0.2 0.3 0.4
ULO

°DR

0.90

0.95

1.00

1.05

1.10

B(
°
,°

U
D
,©

)

Figure 2: Schedulability function against utilization of drop-
pable tasks of a sample elastic task set

partition remains schedulable. This is done by binary search with

tunable precision 𝜖 using the compression algorithm in Section 5.4.

From Equation 7, the utilization of each task 𝜏𝑖 for a given value

of Φ at criticality level 𝜒 can be expressed as:

𝑈
𝜒

𝑖
(Φ) def= max

(
𝑈

𝜒,max

𝑖
− Φ · 𝐸𝜒

𝑖
,𝑈

𝜒,min

𝑖

)
(16)

Then for each of 𝜒 ∈ {LO,HI} and Γ𝑘 ∈ {ΓHI, ΓUD, ΓDR}, we can
now include the system compression level in the corresponding

total utilization parameter as:

𝑈
𝜒

Γ𝑘
(Φ) =

∑︁
𝜏𝑖 ∈Γ𝑘

𝑈
𝜒

𝑖
(Φ)

To simplify notation in the remainder of this section, we abbrevi-

ate𝑈
𝜒

Γ𝑘
(Φ) as𝑈 𝜒

Γ𝑘
. With that, we define the EG-EDF-VD schedulabil-

ity function for a mixed-criticality system Γ at system compression

level Φ as follows.

B(Γ, ΓUD,Φ) =
𝑈 LO

ΓHI
+𝑈 LO

ΓUD

1 −𝑈 LO

ΓDR

·𝑈 LO

ΓDR
+𝑈HI

ΓUD
+𝑈HI

ΓHI
(17)

One may note that this is exactly the same as the function for

IG-EDF-VD except that utilization is now a function of the system

compression level Φ. Because this expression includes task utiliza-

tions for both low- and high-criticality system modes, we consider

the problem of finding a single value of Φ that, when applied to

both criticality levels, guarantees schedulability. Algorithm 2 in Sec-

tion 5.4 finds the minimum such value for the maximal assignment

of tasks to ΓUD.
Figure 2 shows how the EG-EDF-VD schedulability function for

the set of tasks in Example 3 changes with Φ. The schedulability
function for Γmin

(where Φ ≥ max𝑖 {𝜙𝑖 }) is shown as the bottom

RTNS 2024, November 07–08, 2024, Porto, Portugal Sun, Sudvarg, and Gill.

(blue) curve, and that for Γmax
(where Φ = 0) is shown as the top

(green) curve.

Again, each point represents an assignment of tasks to ΓUD. The
x-axis represents the value𝑈 LO

ΓDR
of that partition, and the y-axis is

the schedulability function value B(Γ, ΓUD,Φ). A horizontal refer-

ence line shows the schedulability bound where B(Γ, ΓUD,Φ) = 1.

For these tasks, EG-EDF-VD first finds the maximal schedulable

partition, i.e., the leftmost point under the reference line on the bot-

tom curve. It then decompresses the system, finding the minimum

value of Φ for which the bound is reached, as shown by the red

dot where the dashed line connecting the top and bottom curves

intersects the bound.

5.3 Properties of the Elastic Task Model
Orthogonal to criticality, we partition the set of tasks Γ into two

subsets, ΓFIX (Φ) and ΓVAR (Φ), as in [23]. ΓFIX (Φ) are tasks that

have already reached their minimum utilization𝑈
𝜒

𝑖
(Φ) = 𝑈

𝜒,min

𝑖
;

ΓVAR (Φ) are tasks that can still be compressed, i.e.,𝑈
𝜒

𝑖
(Φ) > 𝑈

𝜒,min

𝑖
.

Note that inelastic tasks are always in ΓFIX (Φ) for any value of Φ.
Because we restrict 𝜙𝑖 to remain constant across criticality levels,

the assignment of tasks to ΓFIX (Φ) and ΓVAR (Φ) also remains un-

changed across a mode switch. We prove this by showing that one

can determine whether an elastic task 𝜏𝑖 is variable or fixed by

simply comparing the system compression level Φ and the task’s

maximum compression level 𝜙𝑖 .

Lemma 5.1. An elastic task 𝜏𝑖 ∈ ΓFIX (Φ) if and only if 𝜙𝑖 ≤ Φ.
Equivalently, 𝜏𝑖 ∈ ΓVAR (Φ) if and only if 𝜙𝑖 > Φ.

Proof. If 𝜏𝑖 ∈ ΓFIX (Φ), then 𝑈
𝜒

𝑖
(Φ) = 𝑈

𝜒,min

𝑖
. Since we know

𝑈
𝜒

𝑖
(Φ) = max

(
𝑈

𝜒,max

𝑖
− Φ · 𝐸𝜒

𝑖
,𝑈

𝜒,min

𝑖

)
, we can derive

𝑈
𝜒,max

𝑖
− Φ · 𝐸𝜒

𝑖
≤ 𝑈

𝜒,min

𝑖

𝑈
𝜒,max

𝑖
−𝑈 𝜒,min

𝑖

𝐸
𝜒

𝑖

≤ Φ

𝜙𝑖 ≤ Φ

If 𝜙𝑖 ≤ Φ, by the definition of 𝜙𝑖 and Φ, we get

𝑈
𝜒,max

𝑖
−𝑈 𝜒,min

𝑖

𝐸
𝜒

𝑖

≤
𝑈

𝜒,max

𝑖
−𝑈 𝜒

𝑖
(Φ)

𝐸
𝜒

𝑖

𝑈
𝜒,max

𝑖
−𝑈 𝜒,min

𝑖
≤ 𝑈

𝜒,max

𝑖
−𝑈 𝜒

𝑖
(Φ)

𝑈
𝜒

𝑖
(Φ) ≤ 𝑈

𝜒,min

𝑖

By definition, 𝑈
𝜒

𝑖
(Φ) = max(𝑈 𝜒,max

𝑖
− Φ · 𝐸𝜒

𝑖
,𝑈

𝜒,min

𝑖
), which

implies that 𝑈
𝜒

𝑖
(Φ) ≥ 𝑈

𝜒,min

𝑖
. Therefore, it must be the case that

𝑈
𝜒

𝑖
(Φ) = 𝑈

𝜒,min

𝑖
and we have 𝜏𝑖 ∈ ΓFIX (Φ).

Since 𝜏𝑖 ∈ ΓFIX (Φ) if and only if 𝜙𝑖 ≤ Φ, the following is equiva-

lent: 𝜏𝑖 ∈ ΓVAR (Φ) if and only if 𝜙𝑖 > Φ. □

Since 𝜙𝑖 remains constant across criticality levels, the partition

will remain the same upon a mode switch for a fixed value of Φ. We

now show that for two system compression levels Φ1 and Φ2, the

partition of tasks into ΓFIX and ΓVAR is the same as long as there is

no task 𝜏𝑖 for which 𝜙𝑖 ∈ (Φ1,Φ2].

Theorem 5.2. Let Γ be a task system and Φ1 ≤ Φ2 be two system
compression levels of Γ. If there does not exist a task 𝜏𝑖 in Γ such that
Φ1 < 𝜙𝑖 ≤ Φ2, then ΓFIX (Φ1) = ΓFIX (Φ2) and ΓVAR (Φ1) = ΓVAR (Φ2).

Proof. Because there does not exist any task 𝜏𝑖 in Γ such that

Φ1 < 𝜙𝑖 ≤ Φ2, it follows that for all tasks 𝜏𝑖 , 𝜙𝑖 ≤ Φ1 ≤ Φ2 or Φ1 ≤
Φ2 < 𝜙𝑖 . If 𝜏𝑖 ∈ ΓFIX (Φ1), then 𝜙𝑖 ≤ Φ1 by Lemma 5.1. Therefore, it

must be the case that 𝜙𝑖 ≤ Φ1 ≤ Φ2. By the same lemma, we get

𝜏𝑖 ∈ ΓFIX (Φ2). By symmetry, if 𝜏𝑖 ∈ ΓFIX (Φ2), then we have 𝜏𝑖 ∈
ΓFIX (Φ1). Therefore, ΓFIX (Φ1) = ΓFIX (Φ2); equivalently ΓVAR (Φ1) =
ΓVAR (Φ2). □

Finally, we show that B(Γ, ΓUD,Φ) is monotonically non-

increasing with Φ.

Theorem 5.3. For a task set Γ with 𝑈 LO
ΓDR
≤ 1, the function

B(Γ, ΓUD,Φ) defined in Equation 17 is monotonically non-increasing
with Φ.

Proof. From Equation 17,

B(Γ, ΓUD,Φ) =
(
𝑈 LO

ΓHI
+𝑈 LO

ΓUD

) 𝑈 LO

ΓDR

1 −𝑈 LO

ΓDR

+𝑈HI

ΓUD
+𝑈HI

ΓHI

For two values of Φ, Φ1 ≤ Φ2, we know from Equation 16

that 𝑈𝑖 (Φ1) ≥ 𝑈𝑖 (Φ2). Furthermore, for 0 ≤ 𝑈 LO

ΓDR
< 1,

𝑈 LO

Γ
DR

1−𝑈 LO

Γ
DR

increases as 𝑈 LO

ΓDR
increases. Thus, B(Γ, ΓUD,Φ) is monotonically

non-increasing as Φ𝑖 increases. □

These properties allow us to develop an algorithm, based on

binary search, that finds the smallest system compression level Φ—
to within some arbitrary degree of precision 𝜖—for which a set of

tasks partitioned according to IG-EDF-VD in Algorithm 1 remains

schedulable according to the bound in Equation 3.

5.4 Elastic Compression Algorithm
Given an elastic mixed-criticality task system Γ characterized as

in Section 3.2, EG-EDF-VD begins by using Algorithm 1 to find

the maximal assignment (in order of importance) of tasks 𝜏𝑖 to

ΓUD. It does so by compressing each elastic task 𝜏𝑖 to its minimum

utilization 𝑈
𝜒,min

𝑖
, then applying Algorithm 1 in Section 4.2 to

the resulting task set Γmin
. Algorithm 2 is then invoked to find

the smallest system compression level Φ for which that partition

remains schedulable.

If B(Γ, ΓUD, 0) ≤ 1, it immediately returns 0 as the partition is

already schedulable without any compression. Otherwise, it iter-

ates through all elastic tasks 𝜏𝑖 in non-increasing order of their

maximum compression levels 𝜙𝑖 , computing B(Γ, ΓUD, 𝜙𝑖). It uses a
variable Φprev, initialized to 0, to track the previously-tested value

of Φ.
If B(Γ, ΓUD, 𝜙𝑖) is 1, then Φ = 𝜙𝑖 is the smallest value deemed

schedulable due to the monotonicity property of Theorem 5.3. Oth-

erwise, if B(Γ, ΓUD, 𝜙𝑖) < 1, we know from Theorem 5.2 that there

is no task 𝜏 𝑗 such that Φprev < 𝜙 𝑗 < 𝜙𝑖 because we are iterat-

ing over elastic tasks in order of 𝜙𝑖 . Therefore, by monotonicity of

B(Γ, ΓUD, 𝜙𝑖), the algorithm uses binary search to find theminimum

(with precision 𝜖) schedulable value of Φ in the range (Φprev, 𝜙𝑖].

Elastic Scheduling for Graceful Degradation of Mixed-Criticality Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

Algorithm 2 Compression

Require: A schedulable partition of an elastic implicit-deadline

sporadic task system Γ.
Ensure: Minimum value of Φ (with precision 𝜖) for which

B(Γ, ΓUD,Φ) ≤ 1.

1: ΓFIX ← {𝜏𝑖 ∈ Γ |𝜏𝑖 is inelastic} ⊲ all inelastic tasks

2: ΓVAR ← {𝜏𝑖 ∈ Γ |𝜏𝑖 is elastic} ⊲ all elastic tasks

3: if B(Γ, ΓUD, 0) ≤ 1 then return 0 ⊲ already schedulable

4: Sort tasks 𝜏𝑖 ∈ Γ in ascending order by 𝜙𝑖
5: Φprev ← 0

6: for all 𝜏𝑖 ∈ ΓVAR do
7: if B(Γ, ΓUD, 𝜙𝑖) = 1 then
8: return 𝜙𝑖 ⊲ exact match

9: else if B(Γ, ΓUD, 𝜙𝑖) < 1 then
10: Φ← BinarySearch(𝜙prev, 𝜙𝑖 , 𝜖)

11: return Φ ⊲ find in interval

12: end if
13: Move 𝜏𝑖 from ΓVAR to ΓFIX
14: Φprev ← 𝜙𝑖
15: end for
16: return Infeasible ⊲ not schedulable

However, if B(Γ, ΓUD, 𝜙𝑖) > 1, it moves 𝜏𝑖 from ΓVAR to ΓFIX, up-
dates Φprev, and proceeds to the next task.

For a set Γ of 𝑛 tasks, the time complexity of sorting the tasks

by 𝜙𝑖 is 𝑂 (𝑛 log𝑛). Then the loop in Lines 6–15 requires no more

than 𝑛 iterations. Each iteration except the last computes the bound

function B(Γ, ΓUD, 𝜙𝑖) once. The last iteration requires at most

log

(
𝜙max

𝜖

)
steps to find the solution via binary search. Since the

bound function requires 𝑂 (𝑛) time to compute, the overall time

complexity of Algorithm 2 is 𝑂

(
𝑛2 + 𝑛 log

(
𝜙max

𝜖

))
.

5.5 Mode Switch Behavior
During runtime, EG-EDF-VD executes similarly to IG-EDF-VD: a job

arriving at time 𝑡𝑎 is assigned a virtual deadline 𝑡𝑎 + 𝑥𝑇𝑖 if 𝜏𝑖 ∈ ΓHI
where 𝑥 is computed according to Equation 4.1 for the current sys-

tem compression level Φ. If a job of a high-criticality task executes

for longer than its assigned 𝐶LO

𝑖
for the system compression level

Φ, tasks in ΓDR are suspended and the remaining jobs are scheduled

according to their actual deadlines 𝑡𝑎 +𝑇𝑖 . Since we only consider

workload-elastic tasks, 𝑇𝑖 is constant across criticality levels.

Tasks that are not suspended have their workloads adjusted to

values derived from the utilizations assigned by EG-EDF-VD under

high-criticality mode. Because these assignments are computed by

the algorithm during offline analysis, no additional computation

is required during the mode switch. (Note, however, that the cost

of communicating and enforcing the new workload assignment is

application-specific.) Furthermore, after the mode switch, a high-

criticality task’s execution time budget does not decrease since Φ
is constant. This means that the amount of time any job executed

prior to the mode switch does not exceed the budget it is assigned

in high-criticality mode, so schedulability remains guaranteed.

Lemma 5.4. For a given value of Φ, for any task 𝜏𝑖 ,

𝑈𝐻𝐼
𝑖 (Φ) ≥ 𝑈 𝐿𝑂

𝑖 (Φ)

Proof. If 𝑈 LO

𝑖
(Φ) = 𝑈

LO,min

𝑖
, then by Lemma 5.1, 𝑈HI

𝑖
(Φ) =

𝑈
HI,min

𝑖
, and we require𝑈

HI, min

𝑖
≥ 𝑈

LO, min

𝑖
.

For tasks 𝜏𝑖 with 𝑈
𝜒

𝑖
(Φ) > 𝑈

𝜒,min

𝑖
, we have 𝑈

𝜒

𝑖
(Φ) =

𝑈
𝜒,max

𝑖
− Φ · 𝐸𝜒

𝑖
. And by definition, 𝑈

𝜒,max

𝑖
= 𝑈

𝜒,min

𝑖
+ 𝜙𝑖 · 𝐸𝜒𝑖 .

Rearranging, we get𝑈
𝜒,min

𝑖
= 𝑈

𝜒,max

𝑖
− 𝜙𝑖 · 𝐸𝜒𝑖 . Then,

𝑈
HI,min

𝑖
≥ 𝑈

LO,min

𝑖

𝑈
HI,max

𝑖
− 𝜙𝑖 · 𝐸HI𝑖 ≥ 𝑈

LO,max

𝑖
− 𝜙𝑖 · 𝐸LO𝑖

𝜙𝑖 ≤
𝑈
HI,max

𝑖
−𝑈 LO,max

𝑖

𝐸HI
𝑖
− 𝐸LO

𝑖

Φ <
𝑈
HI,max

𝑖
−𝑈 LO,max

𝑖

𝐸HI
𝑖
− 𝐸LO

𝑖

𝑈
HI,max

𝑖
− Φ · 𝐸HI𝑖 > 𝑈

LO,max

𝑖
− Φ · 𝐸LO𝑖

𝑈HI

𝑖 ≥ 𝑈 LO

𝑖

Therefore,𝑈𝐻𝐼
𝑖
(Φ) ≥ 𝑈 𝐿𝑂

𝑖
(Φ) for all tasks 𝜏𝑖 at any given system

compression level Φ. □

Thus, the behavior of EG-EDF-VD is correct.

6 Evaluation
In this section, we illustrate the effectiveness of the proposed

IG-EDF-VD and EG-EDF-VD algorithms by evaluating sets of

randomly-generated synthetic tasks, parameterized according to

the elastic mixed-criticality model in Section 3.2. For each set of

tasks, we compare the number of low-criticality tasks that must be

suspended across a mode switch, demonstrating the improvements

realized over EDF-VD. For this simple empirical study, each set of

tasks includes 5 low-criticality and 5 high-criticality tasks. Task

utilizations are assigned as follows:

(1) The total maximum utilization of low-criticality tasks is fixed at

𝑈max

ΓLO
= 0.4−𝜀; we use the Dirichlet-Rescale (DRS) algorithm [13]

to distribute this in an unbiased random fashion across their

individual utilizations. The value 𝜀 is used to compensate for

numerical instability due to floating-point rounding errors; we

set 𝜀 = 0.001.

(2) The total minimum utilization of low-criticality tasks is fixed

at 𝑈min

ΓLO
= 0.35 − 𝜀. We use DRS to distribute this across the

individual utilization values such that each value𝑈min

𝑖
does not

exceed𝑈max

𝑖
.

(3) The total maximum utilization of high-criticality tasks in high-

criticality mode𝑈
HI, max

ΓHI
is swept over the range 0.76−𝜀 to 1.1−𝜀

with a step size of 0.01; for each value, we generate 10 sets of

tasks. We again use DRS to distribute this across the 𝑈
HI, max

𝑖
values.

(4) The total minimum utilization of high-criticality tasks in high-

criticality mode is fixed at 𝑈
HI, min

ΓHI
= 0.75 − 𝜀; we use DRS to

distribute this such that each value 𝑈
HI, min

𝑖
does not exceed

𝑈
HI, max

𝑖
.

(5) The total maximum utilization of high-criticality tasks in low-

criticality mode is fixed at 𝑈
LO, max

ΓHI
= 0.2 − 𝜀; this is again

RTNS 2024, November 07–08, 2024, Porto, Portugal Sun, Sudvarg, and Gill.

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10
UHI, max

HI

0

1

2

3

4

5

Nu
m

be
r o

f t
as

ks
 d

ro
pp

ed

EDF_VD
IG_EDF_VD
EG_EDF_VD

Figure 3: Number of tasks dropped

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10
UHI, max

HI

0.90

0.92

0.94

0.96

0.98

1.00

EDF_VD
IG_EDF_VD
EG_EDF_VD

Figure 4: Schedulability function

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10
UHI, max

HI

0

5

10

15

20

25

Nu
m

be
r o

f t
as

ks
 d

ro
pp

ed

EDF_VD
IG_EDF_VD
EG_EDF_VD

Figure 5: Number of tasks dropped

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10
UHI, max

HI

0.90

0.92

0.94

0.96

0.98

1.00

EDF_VD
IG_EDF_VD
EG_EDF_VD

Figure 6: Schedulability function

distributed with DRS such that each value 𝑈
LO, max

𝑖
does not

exceed𝑈
HI, max

𝑖
.

(6) The total minimum utilization of high-criticality tasks in low-

criticality mode is fixed at 𝑈
LO, min

ΓHI
= 0.15 − 𝜀. We use DRS to

distribute this such that each value 𝑈
LO, min

𝑖
does not exceed

𝑈
LO, max

𝑖
or𝑈

HI, min

𝑖
.

Each task’s period 𝑇𝑖 is generated using a log-uniform distri-

bution (per [10]) from the range [1, 1000]. Workloads 𝐶𝑖 are then

derived from the utilization and period. The maximum compression

level 𝜙𝑖 of each task is generated uniformly from the range [0, 1];
elasticity is then derived using Equation 9. A random sequence of

importance values 𝐼𝑖 are assigned to low-criticality tasks.

Figure 3 shows — for the 1000 task sets generated for each value

of𝑈
HI, max

ΓHI
— the mean number of low-criticality tasks that must be

dropped. Whereas EDF-VDwill always drop all low-criticality tasks,

we can see that IG-EDF-VD is able to execute some low-criticality

tasks across a mode switch by incorporating importance. However,

IG-EDF-VD drops more low-criticality tasks as𝑈HI

ΓHI
increases until

all low-criticality tasks have to be dropped.

For EDF-VD and IG-EDF-VD, which cannot take advantage of

task elasticity, each elastic task is treated as inelastic, i.e., only the

system compression level Φ = 0 is considered. On the other hand,

the number of low-criticality tasks dropped by EG-EDF-VD remains

roughly the same regardless of𝑈
HI, max

ΓHI
because it takes advantage

of task elasticity to compress utilizations.

Figure 4 shows the mean value of the schedulability function

B(Γ) achieved by each algorithm. For the evaluated task sets, both

EDF-VD and IG-EDF-VD can schedule up to𝑈HI

ΓHI
= 0.86 − 𝜀, after

which B(Γ) > 1 for EDF-VD and B(Γ, ΓUD) > 1 for IG-EDF-VD.

Below this, the value of the schedulability function for IG-EDF-VD

lies above that of EDF-VD (but does not exceed 1) as a result of treat-

ing undroppable tasks as high-criticality tasks. On the other hand,

EG-EDF-VD can schedule task sets beyond𝑈
HI, max

ΓHI
= 0.86 − 𝜀 by

compressing task utilizations until B(Γ, ΓUD,Φ) = 1. We can also

see that the value of the schedulability function for IG-EDF-VD

closely follows the schedulability bound as it tries to decompress

as much as possible.

To illustrate the scalability of our proposed approaches, we re-

peated this experiment with task sets having 25 low-criticality and

25 high-criticality tasks, keeping all other parameters the same.

Elastic Scheduling for Graceful Degradation of Mixed-Criticality Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

Results are shown in Figures 5 and 6. Comparing Figure 5 to Fig-

ure 3, the proportion of tasks dropped by each algorithm does not

change significantly. However, as the number of tasks increases,

the number of possible partitions increases, allowing us to find a

partition that takes the schedulability function closer to the bound.

In other words, the points along the curves illustrated in Figures 1

and 2 are more densely placed. This is reflected by Figure 6, which

compared to Figure 4 shows IG-EDF-VD and EG-EDF-VD bring-

ing the schedulability function closer to 1 for smaller maximum

utilizations.

7 Conclusions
In this work, we proposed the IG-EDF-VD scheduling algorithm that

allows only the least important low-criticality tasks to be dropped

upon a mode switch while the schedule is still feasible. We then

extended it to the EG-EDF-VD scheduling algorithm that com-

presses the utilizations of workload-elastic tasks to allow fewer

low-criticality tasks to be dropped upon a mode switch.

As future work, we will extend our algorithms to existing anal-

ysis of EDF-VD for more than two criticality levels [2, 30]. We

will also explore period-elastic tasks, for which additional analy-

sis will be required if period can change across criticality levels.

Additionally, we plan to relax the requirement that the maximum

compression level 𝜙𝑖 for each task remains constant across crit-

icality levels. Finally, we will explore improvements to the time

complexity of Algorithm 2.

Acknowledgments
The research presented in this paper was supported in part

by NSF grants CPS-2229290 and CNS-2141256, NASA award

80NSSC21K1741, and a Washington University seed grant.

References
[1] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo DAngelo, Haohan Li, Alberto

Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2012. The pre-

emptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic

task systems. In 2012 24th Euromicro Conference on Real-Time Systems. IEEE,
145–154.

[2] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto

Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2015. Preemptive

uniprocessor scheduling of mixed-criticality sporadic task systems. Journal of
the ACM (JACM) 62, 2 (2015), 1–33.

[3] Sanjoy K Baruah, Vincenzo Bonifaci, Gianlorenzo d’Angelo, Alberto Marchetti-

Spaccamela, Suzanne Van Der Ster, and Leen Stougie. 2011. Mixed-criticality

scheduling of sporadic task systems. In Algorithms–ESA 2011: 19th Annual Eu-
ropean Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings 19.
Springer, 555–566.

[4] James H. Buckley, Jeremy Buhler, and Roger D. Chamberlain. 2024. The Advanced

Particle-astrophysics Telescope (APT): Computation in Space. In Proc. of 21st
ACM International Conference on Computing Frontiers Workshops and Special
Sessions. 122–127. https://doi.org/10.1145/3637543.3652980 Invited paper at the

conference Special Session on Computer Architectures in Space (CompSpace).

[5] Giorgio C Buttazzo, Giuseppe Lipari, and Luca Abeni. 1998. Elastic task model

for adaptive rate control. In Proceedings 19th IEEE Real-Time Systems Symposium
(Cat. No. 98CB36279). IEEE, 286–295.

[6] Giorgio C Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni. 2002.

Elastic scheduling for flexible workload management. IEEE Trans. Comput. 51, 3
(2002), 289–302.

[7] 2011. Software Considerations in Airborne Systems and Equipment Certification.
RTCA, Inc.

[8] Arvind Easwaran. 2013. Demand-based scheduling of mixed-criticality sporadic

tasks on one processor. In 2013 IEEE 34th Real-Time Systems Symposium. IEEE,

78–87.

[9] Pontus Ekberg and Wang Yi. 2014. Bounding and shaping the demand of gen-

eralized mixed-criticality sporadic task systems. Real-time systems 50 (2014),

48–86.

[10] P. Emberson, R. Stafford, and R.I. Davis. 2010. Techniques For The Synthesis

Of Multiprocessor Tasksets. InWATERS workshop at the Euromicro Conference
on Real-Time Systems. 6–11. 1st International Workshop on Analysis Tools

and Methodologies for Embedded and Real-time Systems ; Conference date:

06-07-2010.

[11] Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. 2015.

How realistic is the mixed-criticality real-time system model?. In Proceedings of
the 23rd International Conference on Real Time and Networks Systems. 139–148.

[12] Tom Fleming and Alan Burns. 2014. Incorporating the notion of importance into

mixed criticality systems. In Proc. 2nd Workshop on Mixed Criticality Systems
(WMC), RTSS. 33–38.

[13] David Griffin, Iain Bate, and Robert I Davis. 2020. Generating utilization vectors

for the systematic evaluation of schedulability tests. In 2020 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 76–88.

[14] Ye Htet, Marion Sudvarg, Jeremy Buhler, Roger D. Chamberlain, and James H.

Buckley. 2023. Localization of Gamma-ray Bursts in a Balloon-Borne Tele-

scope. In Proc. of Workshops of the International Conference on High Perfor-
mance Computing, Network, Storage, and Analysis (SC-W). 395–398. https:

//doi.org/10.1145/3624062.3624107 Presented at 1st Workshop on Enabling Predic-

tive Science with Optimization and Uncertainty Quantification in HPC (EPSOUQ-

HPC), Denver, CO, USA.

[15] 2010. Functional safety of electrical/electronic/programmable electronic safety-
related systems. IEC.

[16] 2018. Road vehicles - Functional safety. ISO.
[17] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of the ACM (JACM) 20, 1
(1973), 46–61.

[18] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor Stefanov, and

Wang Yi. 2016. EDF-VD scheduling of mixed-criticality systems with degraded

quality guarantees. In 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE,
35–46.

[19] James Orr and Sanjoy Baruah. 2019. Multiprocessor scheduling of elastic tasks.

In Proceedings of the 27th International Conference on Real-Time Networks and
Systems. 133–142.

[20] James Orr, Chris Gill, Kunal Agrawal, Sanjoy Baruah, et al. 2018. Elasticity of

Workloads and Periods of Parallel Real-Time Tasks. In Proc. of 26th International
Conference on Real-Time Networks and Systems. ACM, 61–71. https://doi.org/10.

1145/3273905.3273915

[21] Hang Su and Dakai Zhu. 2013. An Elastic Mixed-Criticality task model and its

scheduling algorithm. In 2013 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 147–152. https://doi.org/10.7873/DATE.2013.043

[22] Marion Sudvarg, Jeremy Buhler, Roger D. Chamberlain, Chris Gill, James Buckley,

and Wenlei Chen. 2023. Parameterized Workload Adaptation for Fork-Join Tasks

with Dynamic Workloads and Deadlines. In Proc. of IEEE 29th International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). 232–242. https://doi.org/10.1109/RTCSA58653.2023.00035

[23] Marion Sudvarg, Chris Gill, and Sanjoy Baruah. 2021. Linear-time admission

control for elastic scheduling. Real-Time Systems 57, 4 (2021), 485–490.
[24] Marion Sudvarg, Chris Gill, and Sanjoy Baruah. 2024. Improved implicit-deadline

elastic scheduling. In Proceedings of the 14th IEEE International Symposium on
Industrial Embedded Systems (SIES 2024). IEEE.

[25] Marion Sudvarg, Ye Htet, Sanjoy Baruah, Jeremy Buhler, Roger Chamberlain,

Chris Gill, and Jim Buckley. 2024. Adaptive Execution for Real-Time Observations

of Astrophysical Transients. In Proc. of 13th International Real-Time Scheduling
Open Problems Seminar (RTSOPS).

[26] M. Sudvarg, A. Li, D. Wang, S. Baruah, J. Buhler, P. Ekberg, C. Gill, and N. Zhang.

2024. Elastic Scheduling for Harmonic Task Systems. In IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS).

[27] Marion Sudvarg, Chenfeng Zhao, Ye Htet, Meagan Konst, Thomas Lang, Nick

Song, Roger D. Chamberlain, Jeremy Buhler, and James H. Buckley. 2024. HLS

Taking Flight: Toward Using High-Level Synthesis Techniques in a Space-Borne

Instrument. In Proc. of 21st ACM International Conference on Computing Frontiers
(CF). 115–125. https://doi.org/10.1145/3649153.3649209

[28] Steve Vestal. 2007. Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance. In 28th IEEE international real-time
systems symposium (RTSS 2007). IEEE, 239–243.

[29] Jian Wang, Michael Pikridas, Steven R. Spielman, and Tamara Pinterich. 2017. A

fast integrated mobility spectrometer for rapid measurement of sub-micrometer

aerosol size distribution, Part I: Design and model evaluation. Journal of Aerosol
Science 108 (2017), 44–55. https://doi.org/10.1016/j.jaerosci.2017.02.012

[30] Tianyu Zhang, Nan Guan, Qingxu Deng, and Wang Yi. 2014. On the analysis of

EDF-VD scheduled mixed-criticality real-time systems. In Proceedings of the 9th
IEEE International Symposium on Industrial Embedded Systems (SIES 2014). IEEE,
179–188.

https://doi.org/10.1145/3637543.3652980
https://doi.org/10.1145/3624062.3624107
https://doi.org/10.1145/3624062.3624107
https://doi.org/10.1145/3273905.3273915
https://doi.org/10.1145/3273905.3273915
https://doi.org/10.7873/DATE.2013.043
https://doi.org/10.1109/RTCSA58653.2023.00035
https://doi.org/10.1145/3649153.3649209
https://doi.org/10.1016/j.jaerosci.2017.02.012

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mixed-Criticality Systems
	2.2 Importance
	2.3 Adaptability and Elastic Scheduling

	3 System Model
	3.1 Mixed-Criticality with Importance
	3.2 Elastic Mixed-Criticality with Importance

	4 Inelastic Graceful EDF-VD
	4.1 Motivation
	4.2 IG-EDF-VD Algorithm
	4.3 IG-EDF-VD Schedulability Analysis

	5 EG-EDF-VD
	5.1 Motivation
	5.2 EG-EDF-VD Algorithm
	5.3 Properties of the Elastic Task Model
	5.4 Elastic Compression Algorithm
	5.5 Mode Switch Behavior

	6 Evaluation
	7 Conclusions
	Acknowledgments
	References

