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I. BACKGROUND AND MOTIVATION

The National Academies of Sciences, Engineering, and Medicine, in collaboration with other scientific organizations of the
United States Government (NASA, NSF, DOE), released the Astro2020 decadal survey [1] to identify scientific challenges for
astronomy and astrophysics in the next decade. The survey highlighted the “space-based time-domain and multi-messenger
program” as the highest-priority sustaining activity in space. The goal of this program is to coordinate concurrent observations
of astrophysical phenomena by instruments with different observational modalities — e.g., gravity waves, neutrinos, cosmic
rays, and across the electromagnetic spectrum from radio to gamma rays.

A key component of the broader multi-messenger program is the coordination of real-time follow-up observations of
transient astrophysical phenomena —e.g., gamma-ray bursts (GRBs) and fast-radio bursts (FRBs)— by optical instruments.
The idea is to detect and localize transients in real time using observational data from non-optical, wide field-of-view
(FoV) instruments, thus enabling narrow-FoV optical telescopes to turn and look. The goal is to capture early stages of the
transients’ development in a broader electromagnetic band. This gives rise to several challenges, depending on the type of
phenomenon. For example, GRBs are typically detected by space-based instruments. Due to their high energies, gamma-
ray photons predominantly display particle-like (not wave-like) behavior, making them difficult to lens using traditional
optical instruments. GRB detectors are therefore non-optical, and so burst localization requires data- and compute-intensive
processing of instrument readouts from a large number of gamma-ray scatters. Due to slow intermittent links to the satellite
telescopes, it may take hours before ground-based computers complete localization.

As an alternative, we have proposed —and demonstrated the feasibility of— localizing bright GRBs with subdegree
accuracy in under 200 ms using embedded computational hardware aboard the instrument in space [2]. Recent advances
in fast-slewing robotic optical telescopes, such as the TURBO telescopes under development by the Univ. of MN [3], suggest
that sub-second optical follow-up observations may be possible in the near future, especially if a satellite mission like our
proposed Advanced Particle-astrophysics Telescope (APT) instrument receives funding. For this year’s RTSOPS, we identify
open problems in real-time systems that must be addressed to realize the necessary coordination of localization/follow-up.

II. PROBLEM OVERVIEW

We consider a distributed system that couples a wide-FoV non-optical detector with one or more geographically dispersed
narrow-FoV optical follow-up instruments. If a transient event (e.g., a GRB) is detected, the goal is to localize the event
as quickly and accurately as possible, then direct where the optical telescopes should point to make observations as soon
as possible after detection. However, as we have shown in prior work [4], there is a fundamental tradeoff between fast and
accurate localization. We therefore state the problem as follows:

The system should aim to minimize the expected latency from space-based
detection to secondary observations of astrophysical transients.

III. FAST LOCALIZATION OF TRANSIENTS

A. Related Work

To minimize observational latency, we need to be able to accurately localize transients as quickly as possible. The real-time
systems community tends to focus on predictability of timing guarantees, rather than making a system as fast as possible.
Nonetheless, for our application, fast execution is a prerequisite of timely execution, and speeding up localization on embedded
hardware (such as what might fly aboard a satellite) presents multiple challenges.

We have written about several of these challenges previously. In [2] and [5], we re-implemented the statistical gamma-ray
photon trajectory reconstruction algorithm in [6] as a branch-and-bound tree search, which dynamically prunes the search
space online. In the same papers, we presented novel parallel algorithms for efficient multilateration of multiple reconstructed
trajectories under noisy conditions. In simulation, we demonstrated that these approaches enable accurate localization within
200 ms on a Raspberry Pi 3B+ even for bright bursts that generate large quantities of data. In [7], we explored acceleration
of these algorithms on an NVIDIA Jetson, which couples a CPU and GPU on a single embedded system on chip (SoC). The
considered algorithms assume that sensor data is heavily pre-processed and reduced prior to arrival at the CPU. In [8] and [9],
we presented initial FPGA-based implementations of these preprocessing algorithms using high-level synthesis (HLS).



B. Integration of Deep Learning

With the growing success and richness of domain-specific AI/ML tools and techniques, there has been increasing inter-
est in the astrophysics community [10] (and in the broader academic community) to replace traditional likelihood-based
methods with neural networks. Deep learning can detect gravitational wave traces from binary neutron star mergers in large
datasets [11]; for example, a month of LIGO data can be processed within 50 seconds [12]. The AGILE X-ray/gamma-ray
satellite uses an anomaly detection autoencoder convolutional neural network (CNN) to detect GRBs in real-time using data
from its anticoincident system [13]. These approaches are deployed on powerful ground-based computing clusters.

Preliminary results suggest that our own GRB localization pipeline may benefit from ML-based components, e.g., to
reject background radiation, to predict a gamma ray’s trajectory through the detector, to quantify the expected error in that
prediction, or to perform the final multilateration step for localization [14]. To deploy these components on size, weight,
and power (SWaP)-constrained platforms aboard a satellite like APT may require model compression to meet power and
latency constraints. Techniques such as pruning and quantization [15], [16], early exit [17], [18], layer skipping [19], and
slimming [20] of neural networks have been effective in reducing inference latency; such techniques are surveyed in [21].
Achieving the desired performance requires careful consideration of the underlying hardware, but deployments of pruning
and quantization to GPUs [22] and FPGAs [23] have proven effective.

However, to our knowledge, deployment of slimming and early exit together on an FPGA remains an open problem.
Intuitively, both slimming and early exit dynamically disable parts of the neural network, which lowers execution time (and
therefore energy use) on a CPU-based deployment. Slimming does so by disabling nodes within layers to reduce the width of
the network, whereas early exit disables entire layers to reduce the length of the network, as illustrated in Fig. 1. Traditionally,
early exiting is realized by dynamically choosing the depth based on each input; “easier” inputs (i.e., those deemed easier
to classify) use outputs at earlier stages of the network. This therefore decreases average-case execution time, but does not
guarantee better performance (i.e., shorter latencies) in the worst-case. However, recent efforts have successfully produced
networks that can adapt their width and depth under CPU or GPU resource and execution time constraints [24].
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Fig. 1: Neural network model compression techniques.

Given the high degree of parallelism provided by an FPGA, online slimming logic (adaptive width) could be synthesized
to reduce power draw, with deterministic early exits (adaptive depth) used to reduce latency. What is needed, therefore, is
(i) a model that captures the accuracy, energy, and latency tradeoffs to dynamically select the best slimming and early exit
configuration during runtime, and (ii) an FPGA implementation that can enforce this. For the latter, HLS may be capable
of specifying nodes and layers as logical blocks with data paths between them enabled/disabled via dedicated signals.
Investigation into these techniques is ongoing.

IV. SPEED AND ACCURACY TRADEOFFS FOR FOLLOW-UP OBSERVATIONS

The aforementioned concerns with adapting neural network designs are part of a speed vs. accuracy tradeoff. Though we
want both speed and accuracy, one may need to be sacrificed for the other. In prior work, we framed the problem as one
of constrained optimization: accuracy should be maximized while guaranteeing completion within some deadline [4], [25].
The deadline may be dynamic (i.e., unique to each GRB localization job), but it is nonetheless firm.

However, this is only a limited expression of the problem we want to solve. As stated previously, we aim to minimize
the expected latency from detection to follow-up observation. This latency has three components: (i) the time to perform
localization, (ii) the time to transmit the source direction to a secondary telescope, and (iii) the time to physically search for
the burst within the localized region. As we may not have control over (ii), we consider instead the tradeoff between (i) and
(iii). Fundamentally, the challenge is that localization is imprecise, so that the inferred direction has some associated error.
We instead consider localization as the process of constraining the source to a given region of the sky, rather than an exact
direction. This region is likely to be larger than the FoV of the secondary optical telescope but can be searched by physically
moving the telescope. This idea is illustrated in Fig. 2. This gives rise to the following optimization problem:

minimize t(L) + A(L)
2s

(1)



Here, L defines the computational mode selected for localization, t(L) is the time to execute that mode, A(L) is the area of
the region that we expect to be constrained, and s is the speed at which the optical telescope can search the region. Note
that we use 2s in the denominator to reflect that, in expectation, half the region must be searched before the source is found.
Intuitively, we want to tune the localization algorithm so that it narrows the constrained search space faster than the optical
instrument alone can. Our prior work in [4] demonstrated a technique to quantify how quickly localization error is reduced
with additional execution time, but it remains an open problem to instead quantify the effect on the search space.
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Fig. 2: The localized source region may be larger than the field of view (FoV) of the secondary optical telescope.

Moreover, in reality the predicted search region is not exact but is instead only bounded with some confidence. Therefore,
a stochastic model that considers a probability density function describing the direction also may be needed. Then, both
closed-form analytical solutions and approaches based in e.g., Markov Decision Process (MDP) models, combined with e.g.,
Monte Carlo simulations, and the development of advanced techniques to solve them such as recurrent neural networks, can
be used to define sufficiently efficient procedures for online use that are optimal in expectation.

V. ELASTIC JOB SCHEDULING

When adapting execution (e.g., of neural network inference or the localization algorithm) in the face of resource and latency
constraints, we must consider the system as a whole: jobs do not run in isolation, but must be scheduled concurrently. For
example, the proposed APT instrument will be composed of multiple detectors; a single transient may be sensed by more
than one detector, or multiple transients (e.g., a GRB and a single high-energy cosmic ray) might overlap in the time domain.
Moreover, instrument control jobs, e.g. that respond to power or thermal events, may arrive in sporadic or aperiodic fashion.

Buttazzo’s elastic scheduling model for real-time tasks [26] provides a framework to adapt task utilizations to guarantee
schedulability in the face of overload. Each task is parameterized by an “elastic” constant representing its relative adaptability
(e.g., based on its importance). If the system is overloaded, task utilizations are reduced (“compressed”) from their desired
values proportionally to these elastic parameters until the system becomes schedulable; this may be realized by extending the
periods of tasks, or decreasing their execution time budgets. Each task may also be assigned a minimum utilization below
which it cannot be compressed. Though elastic scheduling has been extended to several recurrent task models [27], [28],
[29], [30], [31], [32], [33], it has not yet been extended to independent jobs.

As one possible approach, we propose the following model. Consider a sequence of jobs Ji = (Cmin
i , Cmax

i , Ai, Di, Ei).
Cmax

i represents the job’s desired execution time budget given no resource constraints, while Cmin
i represents the extent

to which it can adapt by decreasing its execution time. The job arrives at time Ai and must complete by its deadline Di.
When a job arrives, one must determine whether all current jobs are still schedulable; if not, their workloads are compressed
proportionally to their elastic constants Ei. For EDF scheduling, the problem may be stated as follows. When a job arrives
at time to, we consider the current set of active jobs Ji (indexed in deadline order). We aim to:

minimize λ (2a)
s.t. Ci +∆i ≥ Cmax

i − λEi (2b)

Ci +∆i ≥ Cmin
i (2c)∑

j≤i

Cj ≤ Di − to (2d)

Here, ∆i represents the amount of time that job Ji has already executed. λ represents the “amount” of compression applied
to the system. This is reflected by the first constraint, which says that the execution time of each job is compressed from
its maximum value proportionally to its elastic constant. The second constraint prevents a task’s execution time budget from
being compressed below its minimum value. The third constraint guarantees schedulability: the remaining execution time for
a given job, plus those jobs with higher priorities, must be less than the time remaining before its deadline.

Two problems arise when considering such a model. (i) How can this be solved efficiently during online job arrival? Since
this is similar to the problem of utilization compression, the problem can be solved in linear time on the number of jobs



using our prior technique in [34] for each constraint of the form in (2d). Since there is one such constraint for each job, this
requires quadratic time complexity, though a faster algorithm might be possible. Also (ii), what is the competitive ratio of
this online algorithm compared to a clairvoyant algorithm that knows the future sequence of job arrivals? In other words,
for a given sequence of jobs, how does the maximum compression λ given by the online algorithm compare to that which
is necessary if all future job arrivals are known a priori?
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