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Abstract—Timely observation of transient astrophysical phe-
nomena (TAP) is of crucial importance for our understanding
of the universe and the laws of physics, as recognized by the
National Academies in the Astro2020 decadal survey. Ultimately,
the goal is to observe TAPs as early as possible using optical
telescopes. This is non-trivial due to the probabilistic nature of
the search problem, where multiple potential sky locations for
a TAP, each with an associated probability, must be scheduled
for observation before successful localization. The problem lies
at the intersection of several research disciplines, including real-
time systems, cyber-physical systems, astrophysics, and operations
research, motivating the need for a unified modeling framework.

To this end, we introduce the first formal stochastic, response-
time-aware model for search planning toward detection and
localization of TAPs. We consider the problem of maximizing
expected utility of early localization and show that it is reducible
to the Orienteering Problem. Building on this formulation, we
develop the real-time-capable Greedy-Christofides Pathfinding
(GCP) algorithm. An evaluation on 37 probability maps from
LIGO demonstrates that GCP consistently achieves high solution
quality and computational efficiency across diverse search sce-
narios. GCP achieves < 0.5% deviation from the ILP-computed
optimal solution on tractable problem instances while running
within a second, on average, for larger inputs.

I. INTRODUCTION

The U.S. National Academies of Sciences, Engineering,
and Medicine, in collaboration with other scientific organi-
zations (NASA, NSF, DOE), released the Astro2020 decadal
survey [59] to identify scientific challenges for astronomy
and astrophysics in the next decade. The survey highlighted
the “space-based time-domain and multi-messenger program’
as the highest-priority sustaining activity in space. The goal
of this program is to coordinate concurrent observations
of astrophysical phenomena by instruments with different
observational modalities (e.g., gravity waves, neutrinos, cosmic
rays, and across the electromagnetic spectrum).

A key component of the broader multi-messenger program
is the real-time coordination of astrophysical observations
to achieve timely optical detection of transient astrophysical
phenomena (TAPs), such as kilonovae and supernovae.

A typical example of such coordination is presented in Fig. 1
in four stages (a—d). First, a TAP emits prompt messenger
signals, e.g., a gamma-ray burst (GRB) (stage a), which are
subsequently detected by a wide-field, non-optical instrument
(stage b). Observational data from that instrument are used to
construct a map that encodes the spatial probability distribution
of the source location. This map is transmitted to an optical
telescope (stage ¢) for follow-up observations.

A key challenge is that many non-optical instruments cannot
constrain the TAP’s origin to within a region smaller than
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Fig. 1. I and II: Overview of the real-time search pipeline for transient
astrophysical phenomena (TAP). III: Temporal decay of the modeled energy
flux eops across different energy bands [9], overlaid with deadlines D1, Da,
and D3 corresponding to scientifically significant observation phases.

the narrow field-of-view (FoV) of most optical telescopes,
as illustrated in Fig. 1(; the likely region for a TAP often
spans an area equal to numerous FoVs (e.g., [7, 29, 66]). To
address this challenge, the optical telescope conducts a time-
consuming search (stage d in Fig. 1)) across multiple FoVs to
identify the TAP’s precise location. Effective search strategies
are therefore important to ensure that early features of the
TAP’s evolution across the broader electromagnetic spectrum
are observed (see Fig. 1qr)).

The scientific motivation for prioritizing early observations
stems from the fleeting nature of several physical processes
involved in many TAPs, which evolve on timescales ranging
from milliseconds to hours and vary across different types of
transients (e.g., [14, 15, 68, 75]). Several theoretical models
describing the early evolution of various TAPs remain uncon-
firmed and are continuously refined through prompt optical
observations (e.g., [35, 60, 80]). Whether these processes can
be captured depends on the temporal properties of the event and
the response-time capabilities of the telescopes. We elaborate
the scientific objectives in Section II.

To jointly capture the fime-sensitive nature of the problem
and the varying scientific value of localization at different stages
of TAP evolution, we adopt the figure of merit (FoM), which
is a quantitative measure of mission success, and is a notion



instantiated broadly as a science merit function [19] in space
research [65]. Ultimately, an FoM is assigned to each of several
deadlines for observation, corresponding to the timescales at
which physical processes of interest to the mission are expected
to remain observable. For example, Fig. 1qm) shows simulated
light curves from supernova afterglow [9]. These may be used
to inform deadline selection; e.g., D1 corresponds to the time
of peak emission across most energy bands, Do to the onset
of the plateau phase and emergence of 1eV (near-infrared)
emission, and Dj3 to the start of the late-time decay.

The Search Problem. In this paper, we consider the search
problem (stage d in Fig. 1)) that seeks to maximize the
expected FoM for optical observations of a single detected TAP.
In particular, we consider the entire mission-planning problem
before the telescope starts to move. We conduct our efforts
within the following framework. A TAP’s spatial probability
distribution is discretized for an optical telescope by projecting
its FoV as a set of tiles providing complete coverage of the
sky (see Fig. 1(1)); each tile is associated with the probability
that the TAP originated from a direction within its boundary.
We consider the following problem to model the detection of
a TAP by a searching optical telescope.

Given: a set of tiles, each characterized with % the probability
that the TAP originated within its boundary and (2) an upper bound
on the dwell time required for the optical telescope to determine
whether or not the TAP is present in that tile. Each pair of tiles
is characterized with the time it takes for the telescope to
move between them. And @ a set of deadlines, each assigned an
FoM associated with meeting it. Produce: the sequence of tiles
to search so as to maximize the expected FoM.

We assume in this paper that the times to move between tiles

satisfy the triangle inequality, a restriction justified by the

mechanical properties of many real telescope mounts.

Contributions. This paper presents, to our knowledge, the first
formal probabilistic, time-aware model for search planning
(defined in Section III) that (i) considers the time both to move
between search locations, and to observe the current location
to detect the target, and (ii) incorporates multiple deadlines
by explicitly encoding the expected FoM as the optimization
objective. Although the problem is stochastic, we show in
Sections V and VI that it can be solved deterministically. In
particular, it is solved optimally by finding a traversal pattern
that maximizes the cumulative detection probability amassed
within each deadline, weighted by the corresponding FoMs.

With even a single deadline, we observe that our problem
inherits hardness of approximation from orienteering (Corol-
lary 3) and is APX-hard. However, we also demonstrate that the
problem can be reduced to the Orienteering Problem (OP), such
that any a-approximation to OP becomes an «-approximation
to our problem (Corollary 4). Further, an a-approximation for
the single-deadline case may be extended to optimize the FoM
over multiple deadlines while maintaining a polynomial bound
on the increase in approximation ratio (Section VIII).

From these observations, we propose the response-time-
aware Greedy-Christofides Pathfinding (GCP) heuristic for
maximizing the expected FoM in time-constrained search
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Fig. 2. LIGO spatial probability map from gravitational-wave signal
GW230529_181500 [2] with inset showing a tiled region.

scenarios.! We evaluate GCP on 37 probability maps from
gravitational-wave events detected by LIGO [2, 4] using
realistic models of optical telescopes participating in multi-
messenger follow-up campaigns. We compare it to a Genetic
algorithm and a greedy heuristic (Section IX). Results indicate
that GCP consistently achieves high solution quality, closely
matching the optimal solution of an ILP formulation on small
problem instances, while remaining computationally efficient
across complex and diverse search scenarios.

II. BACKGROUND

Scientific Objectives. Time-domain and multi-messenger as-
trophysics provide insights arising from temporally aligned
“information carried by photons, gravitational waves, neutrinos
and cosmic rays” [58]. The Astro2020 survey [59], released
as a joint effort among U.S. scientific agencies, identifies the
field as its highest priority among space-based programs.
Many sources of these “messenger signals” are transient
astrophysical phenomena (TAPs), which are often initially
detected by prompt, high-energy emission signatures, e.g.
gamma-ray bursts (GRBs). Theoretical models describing the
TAP’s early evolution may be confirmed or refined through
additional optical observations. For example, open questions
remain about prompt optical counterparts concurrent with the
initial short GRBs emitted by binary neutron star mergers;
shock breakout and cooling effects which occur in the first
seconds to a fraction of an hour of supernovae [81]; and
thermal and radioactive decay mechanisms for which important
data may be obtained from the first minutes to hours of early
afterglow light curves. To capture these processes, observations
must be made at the appropriate timescales, implying a deadline
by which the TAP must be localized by a searching telescope.
The associated challenges are longstanding problems but, if
modeled appropriately, may be particularly suitable to the
collective expertise of the real-time systems community.
Given that the target TAP’s location is not known a priori,
unless the complete search region can be covered, even an
optimal strategy cannot guarantee success within the deadline.
A deadline miss, however, should not be considered a mission
failure: subsequent observations may still be useful. Indeed,
the late optical afterglows of GRBs often last several days
(see Fig. 1am). This suggests some time utility of the follow-
up observations, which decreases the longer they are delayed
during the search. Borrowing terminology from NASA for

Thttps://github.com/Daisy0419/Telescope- Searching-Problem



space missions [65], we quantify this utility as a figure of merit
(FoM) associated with meeting successive deadlines (Fig. 1))
imposed by the different processes we want to observe.

TAP Detection and Localization. After messenger signals (a)
emitted by a TAP reach instruments on (or in orbit around)
the Earth, the several stages depicted in Fig. 1 must execute
to produce the inputs to the search problem considered in this
paper. A high-energy detector, e.g., for gamma rays (Fermi [11],
COSI [76], APT [22]), neutrinos (IceCube [1], ANTARES [6]),
or gravitational waves (LIGO [3], VIRGO [16], LISA [31]),
rapidly detects the TAP with an almost omnidirectional FoV.

Observed data from the TAP are then analyzed (b) using
a parametric model of the high-energy instrument’s detector
response, which does not depend on prior probabilities of TAP
appearances, to evaluate the likelihood that the TAP originated
from each spatial direction, e.g., with the BAYESTAR [71]
software for gravitational-wave signals (see Fig. 2) or the
cosipy library [23, 57] for GRBs. The resulting probability
map is typically discretized using HEALPix [39], an equal-area
tiling of the sphere, for (c) transmission to optical telescopes.
Ongoing efforts to estimate the TAP’s source direction in real
time aboard high-energy detectors [73, 74] are particularly
important for space-based instruments like APT, for which
limited communication bandwidth and high speed-of-light
latency to Earth may induce unwanted delays in stages (b—c).

Properties of Optical Telescopes. Upon receiving a probability
map, an optical telescope projects its FoV into a set of tiles to
completely cover the constrained search region, as illustrated
in the inset in Fig. 2. Each tile is assigned a probability
based on its intersection with the HEALPix regions in the
probability map, e.g., using the methods of [37]. Tiles are
then observed in sequence. Current methods adopted by the
astronomy community to determine the order, e.g., those
outlined in Section X, do not attempt to solve the formal
response-time and FoM-driven problem explored in this paper.

Captured images are analyzed to identify whether the TAP
is present in the observed tile. Standard analytical techniques,
e.g., those outlined in [8], include astrometric alignment [49]
with cataloged images [24, 82], image subtraction [45], and
the use of ML classifiers to identify whether features in the
difference image indicate the presence of the TAP [21].

Two key properties of the optical telescope must be consid-
ered when defining a search order: the time it takes to move be-
tween tiles, and the “dwell time” to collect enough light from a
single tile to ensure TAP identification. Many optical telescopes
participating in multi-messenger observational campaigns, e.g.,
RAPTOR [18] and the 7DT [48], use direct-drive mounts that
enable geodesic movement among tiles with traversal time
proportional to the angular difference between the tile centers.
The set of tiles and the movement times among them thus
form a metric space (distances are non-negative, symmetric,
and satisfy the triangle inequality), which is important for the
problem reduction in Section VI. Movement costs for mounts
using separate elevation and azimuthal motors are history-
dependent due to degeneracy of the spherical coordinate system

TABLE I. TERMINOLOGY

Symbol Explanation
T The set of tiles in a telescope’s field of view.
T ET A tile from 7.

m (7, 75) € R>o Upper bound on the transition time needed to refocus

the telescope from tile 7; to tile 7; (assumed metric,
i.e., symmetric and satisfies the triangle inequality).

Ci € Rxo
D2 (Dy,...,D:1)

Upper bound on dwell time for successful detection.

Sequence of deadlines corresponding to stages of
interest in the TAP emission.

M £ (Ma,...,M._1) Figures of Merit (FoMs) quantifying the scientific
merit of TAP detection and localization within the

corresponding deadline.

P:F—[0,1] A function encoding a spatial probability distribution

derived from the non-optical telescope.

pi €[0,1] Probability of TAP originating in ;.

at the poles; considering these is therefore left to future work.

The telescope’s optical sensitivity and estimates of the TAP’s
optical brightness based on the flux observed by the high-energy
instrument are used to define an upper bound on the dwell
time. Atmospheric opacity, e.g., as computed by the SMARTS
model [41], also impacts dwell times for ground-based optical
telescopes. This implies a non-uniform dwell time across tiles;
for example, a telescope must look through a greater mass of
atmosphere at angles closer to the horizon [47].

We note that methods for deriving the parameters discussed
in this section are not the focus of this paper; these parameters
are assumed to be given as inputs to the considered problem.

III. SYSTEM MODEL AND PROBLEM STATEMENT

Tiling. Let 7 £ {71,...,7,} be a set of tiles projected
with respect to the FoV for the telescope of interest. The
upper bound on the time needed for the telescope to shift
its focus from 7; to 7; is m(7;,7;). We assume m is
metric, i.e., m (7;,7;) = m (7, 7;), and for any three tiles 7,
7, and 7, m (7, 7) < m (7, 7;) + m (7, 7) always holds.
Upon commencing optical detection (hereafter referred to as
detection), on tile 7;, it is assumed that the time to determine
the TAP’s presence is upper-bounded by a known value C;.

Deadlines. Let D = (D, ..., D._;) be an increasing sequence
of mission-specified deadlines corresponding to specific stages
of interest in the TAP emission (see Fig. 1), relative to
the time Dy (=c in Fig. 1qy) at which the optical telescope
receives the spatial distribution.

Figure of Merit (FoM). Let M £ (My,...,M,_;) be a
sequence of figures of merit for each deadline. An FoM
is a number representing a measure of success in space
missions [65]. In this context, M, € M is a mission-
specified scalar quantifying the scientific merit [19] of TAP
detection within the time interval (Dy_1, Dy]. For the sake of
explainability [13], we define M; £ 1 and impose the ordering
My > My > --- > M,, reflecting the principle that successful
detection before Dy, implies success at all subsequent deadlines.
This setup enables an intuitive comparison of values. For
instance, if M7 = 1 and M5 = 0.5, then detection before D,



ps=0.1
Cs=1
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Fig. 3. An example with four tiles and corresponding parameters from Table 1.
Note: p1 =0 and C' =1, while for 7 € 7\ {71}, m (11, 7%)=1.

is considered twice as valuable as detection occurring after D,
but not after D,. For completeness, we define D, £ 450 and
M, £ 0, indicating that the mission is considered unsuccessful
beyond the last mission-specified deadline D,_1.

Tile-Based Probability Distribution. Formally, we consider
the probability space (€2, F,P). Let 2 denote the sample space
over outcomes w € ). For the considered problem, an outcome
represents the origination of a single TAP in a specific tile
7;; we define a function o : Q) — 7 that maps each outcome
w to its corresponding tile 7;. Then F C 2% is the event
space, where each event is a subset of outcomes in (2. Finally,
P : F — [0,1] is a function that maps each event to its
corresponding probability. Here, P encodes a single TAP’s
spatial probability distribution inferred from observational data
taken by a non-optical telescope, and discretized to the FoV-
based tiling (see, e.g., the probability map in Fig. 2).
Problem. Given the parameters defined above, the primary
objective is to maximize the mission’s FoM. Ideally the TAP
would always be detected at or before D, resulting in the
maximum possible mission FoM M; = 1. However, several
factors make this problem inherently complex:

o A telescope may be unable to observe all tiles within a
deadline, potentially resulting in a lower figure of merit
due to the problem instance.

o From the perspective of search planning, the resulting
figure of merit is a random variable, reflecting the
stochastic nature of the search process over a probability
space where successful TAP detection is uncertain yet
open to probabilistic quantification.

« Optimizing the search strategy for a specific deadline,
e.g., D1, may lead to inefficiencies in long-term mission
planning, as it can cause significant divergence from
strategies optimal for later, more feasible deadlines.

We note that, although optical afterglows from multiple TAPs
might be visible simultaneously, the classes of high-energy
TAP signals we consider are observed only about once per
day globally; their initial bursts would almost never coincide.
We therefore assume that the probability map being searched
originates from a single TAP. Searching for multiple TAPs
within distinct probability maps is left to future work.

IV. MOTIVATING EXAMPLE

To illustrate the above concerns, we present a motivating (and
running) example highlighting the importance of incorporating
response-time awareness into the problem statement.
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Fig. 4. Cumulative distribution function of a successful TAP detection for six
search orders over time (up to 17 TUs) considering two mission deadlines.

Consider a configuration of four tiles 7 = {71, 72, 73,74} as
illustrated in Fig. 3, with probabilities p; = 0, po = 0.1,
p3 = 0.1 and ps = 0.8. Assume that the optical telescope is
initially focused on 7; since p; = 0 it is thus excluded from
further consideration. Let us consider two deadlines D, = 4
and Dy = 12 for two TAP emission phases of interest. Six
complete search orders (SO) starting from 77 visit each tile:

S()ll TN —> T2 —> T3 —> T4 , S()QI TNl —> T3 —> T2 — T4
S();),Z TL —> T2 —> T4 — T3 , S(,)J,I Tl —> T3 —> T4 — T2
SOBI T —> T4 —>To —> T3 , S()(;Z TL —> T4 —> T3 — T2

but the corresponding response-time distributions for successful
GRB detection vary significantly (see Fig. 4).

Interpretation. Fig. 4 depicts the cumulative distribution
function (CDF) of a successful TAP detection up to time ¢
(expressed in generic time units on the x-axis). For instance, the
probability that SO, SO, SOs, or SO, successfully detect
the TAP up to time ¢ = 4 is 0.1, while for SO5 or SO it is 0.
This means that for the mission-specified deadline D; = 4,
search orders SO1-50, are preferred over the others. However,
for Dy = 12, SO5 and SOg are better than the alternatives,
as the probability of a successful TAP detection would be 0.8
compared to 0.2 (SO; or SO3) and 0.1 (SO3 or SO,).

Let us now introduce the figures of merit. By definition,
My = 1. Suppose My = 0.5, suggesting that the contribution
to the overall mission value of detecting a TAP after D; but not
after Dy is half that of detecting it no later than D;. The FoM
of the entire search mission is a random variable depending
on the search order as follows:

e For SO; and SO, the FoM takes the values 1 (Pr 0.1),
0.5 (Pr 0.1), and O (Pr 0.8). The expected FoM in this
case is E[FoM] =1-0.14+0.5-0.14+0-0.8 = 0.15.

e For SO3 and SO.,, the FoM takes the values 1 (Pr 0.1),
0.5 (Pr 0), and O (Pr 0.9). The expected FoM in this case
is E[FoM]=1-0.1+0.5-0+0-0.9=0.1.

e For SO; and SOg, the FoM takes the values 1 (Pr 0),
0.5 (Pr 0.8), and O (Pr 0.2). The expected FoM in this
case is E[FoM] =1-0+0.5-0.8+0-0.2=0.4.

From the analysis above, SO5 and SOg are the preferred

search orders, yielding a higher expected FoM than alternatives.

In conclusion, an efficient algorithm that explores a broad

search space is essential. Overly local strategies (e.g., optimis-
ing for D1) risk mission failure, while computationally heavy
algorithms may fail to produce a timely search order.

In Section V, we formally define a notion of the search

order, its response time, and its expected FoM. In Section VI,



we show that the simplest instance of the problem is APX-hard
and can be modeled as a variant of the Orienteering Problem
(OP) [77], while Section VII presents the proposed algorithm.

V. RESPONSE TIME OF AN OPTICAL DETECTION

While this section provides a rigorous probabilistic for-
mulation of the problem, readers primarily interested in
its deterministic resolution may skip ahead to Section VI,
where we show that the problem reduces to a deterministic
optimization, namely the orienteering problem.

To define the response time for detecting a TAP, we first
define the concept of a search order. Let £ < n and let
m:{0,1,...,k} — 7 be a search order function, where for
1 <@ <k, 7(i) represents the i-th tile allocated for observation
while 7(0) is the start tile, ie., the tile of focus at time Dy
according to the optical telescope’s current pointing when it
receives the probability map. We require that 7 is injective
on the subset {1,...,k}. That is, each tile is allocated only
once for TAP detection, as allowing revisits could inflate the
worst-case response time: early exits followed by revisits may
lead to overly inefficient searches. Let 7—1(-) be the inverse
function of 7(-) and let 77 (-) be the function returning the
tile index. Finally, let S be the set of all possible orders.

The response time of a successful TAP detection depends on
the assigned search order and the probability space ({2, F, P).
We consider its upper bound to be a random variable, denoted
by R : S x @ — Rx>¢. Its cumulative distribution function
(CDF), for a given search order 7 is Fr_(t) =P[R, < t].
R is formally defined as follows.

Def. 1. The upper bound on the response time of a successful
TAP detection in sample w € ) with search order = is:

7 (o(w))
Raw) 2 > m(n(i —1),7(i)) + Crry).
i=1
Example 1. Consider 1 = SOg from the running example,
which starts at T, and assesses the TAP’s origin at T4 — T3 — To.
Suppose that w denotes the outcome corresponding to the
TAP originating in T3, that is, o(w) = 73. Since 73 is the
second tile considered in SOg, 7! (0o(w)) = 7~1(3) = 2. The
corresponding response time is:

Ro(e) = Y- m (n(i = 1), 7w(0)) + Cor

=m (7(0),7(1)) + Crray + m(7(1),7(2)) + Crs(2)
=m(11,74) +Cs + m(74,73) + C3 =1+10+2+1 = 14.

Rr(w) is an upper bound rather than the exact response
time since we acknowledge that detection may occur earlier.
However, we conservatively assume that the detection time on
each tile 7; € 7 is given by C};, which represents an upper bound
on the execution time required for successful TAP detection.
The transition times are also treated conservatively.

Similarly, the lower bound on the mission’s FoM is also a
random variable M : S x Q — [0, 1] defined as follows.

Def. 2. The lower bound on the mission’s figure of merit in
sample w € ) with search order 7 is:

M (w) £ min {M; | R.(w) < D;}.
Example 2. Building upon Example 1, M is computed as:
M (w) =min{M; | 14 < D;} = M5 =0,

implying that search order m = SOj3 is unsuccessful in event
{w} (TAP originating in 73) because R(w) = 14 > Dy =
12. Since D> =12 is the last mission-defined deadline, FoM
evaluates to M3, which corresponds to the auxiliary deadline
D3 = 400, indicating an unsuccessful outcome (M3 =0).

Conversely to the response time, the mission’s FoM can
be higher if the TAP is localized earlier, but here we once
again seek a conservative estimate by assuming that detection
happens only after conservative R, (w) units of time.

Finally, we utilize the following lemma to efficiently compute
the upper bound on the expected value of M.

Lemma 1. Let M be the random variable of Definition 2 and
for legibility, let ¢ ; £ Fr_(Dy). Then, its expectation is:

z—1
EMq] = M (¢ni— bri1)-
i=1

Proof. E[M ]

oy S min{M, | R (w) < D} - B({w})

=1 weQ|D;_1<Rx(w)<D;

2> M;-P[Diy < Rr < Dy

i=1
. z—1
g Z Mz ! (¢ﬂ,i - ¢ﬂ,i—1) @ ZMZ ’ (¢ﬂ’i B QSWJ_I)'
i=1 =1

A

Step (i) follows by definition of expectation E[M,] =
> weq Ma(w) - P({w}), Definition 2, and by partitioning the
sample space () according to the successful detection within
(D;—_1, D;] intervals. Step (i) follows by definition of min in
the interval D,_; < R,(w) < D; where the inner expression
simplifies to M;, by factoring out the constant M; from the
inner sum and by recognising the inner sum as the probability
P[D;—1 < R < D;]. Step (iii) follows by the CDF identity
]P)[Di_l <R, < Dz] = FRW(Dl) — f‘jR7r (Di—l) (e.g., from
Equation 4.14 in [61]). Finally, Step (iv) follows since M, = 0
by definition from Section III, which concludes the proof. [

Lemma 1 is convenient because it expresses the expected
FoM entirely in terms of the cumulative distribution function
evaluated at a finite number of deadlines. Consequently,
comparing different search orders reduces to comparing
their respective CDFs at the given deadlines, thus simplifying
both analysis and optimization.

This observation motivates the following theorem, which
formalizes the principle that a search order whose CDF
dominates that of others across all deadlines necessarily
achieves a greater or equal expected FoM.



Theorem 1. If 7,7’ € S and for all i € {1,...,z —
FRW (Dz) > FR,,/(DZ’), then E[Mﬂ—] > E[Mﬂ—/]

Proof. We prove E[M ] — E[M,] > 0. For legibility, let
brei = Fr_.(D;) and let us start from E[M] — E[M/]

1},

z—2 z—2

LY Myir - (bmht1—br k) — Y Mi1(bnr k1 — b )
k=0 k=0
z—2 z—2

SN bnprt- (Mys1—Miyo) =Y b b1 (Myy1 — Miyo)
k=0 k=0
z—2

g Z(¢w,k+1 — Ont 1) (Mppr — My12) (Z) 0.
k=0

Step (i) follows from Lemma 1 and from applying reindexing
k = i — 1, implying ¢ = k + 1. Step (ii) follows from
Abel’s summation by parts lemma (e.g., Equation 2.56 in [40]):
S nZo bi(@rt1 — ak) = anbn —aobo + 35 g @kt (b — brt1)
applied withn = z—1, by, = My41 and ay, = ¢+ i, for 7 € S.
Terms corresponding to a,,b,, and agby equal zero due to model
assumptions (b, = b,_1 = M, =0 and a9 = Fr_..(Dy) = 0).
Step (iii) follows from applying the linearity of summation
and the distributive law of multiplication. Step (iv) follows
by theorem assumption, i.e., for 0 < k < 2 — 2, ¢r 41 —
G k1 = Fr, (Diy1) — Fr_, (Dgy1) > 0, and by system
model assumptions on FoM: M1 — Mo > 0. O

By iteratively applying Theorem 1, we conclude that if there
exists a search order 7 € S such that Fr_(D;) > Fr_,(D;)
for all : € {1,...,z} and all 7’ € S, then 7 achieves the
maximum expected FoM among all search orders.

Corollary 1. Let 7 € S be such that for all ' € S and all
i €{l,...,z— 1}, it holds that Fr_(D;) > Fr_,(D;). Then,
max E[M/] = E[M].

n’eS
Proof. By induction on the cardinality of S, using Theorem 1
at each step to compare 7 to every other search order. [

In the following section, we show that the problem of finding
the optimal search order is APX-hard, and that a special case
(z = 2) reduces to the orienteering problem.

VI. REDUCTION TO THE ORIENTEERING PROBLEM

Let us consider the special case z = 2, where there is only
one mission-specified deadline D; with M; = 1 denoting
a successful mission, and an auxiliary deadline Dy = +o00
with Ms = 0 denoting an unsuccessful mission. We begin by
showing that the optimal search order is the order achieving the
highest probability of detection before the mission deadline.

Corollary 2. If |D| = 2, w € S, and for all 7' € S, the CDF
F’RW (Dl) > F’Rﬂ/ (Dl), then

g};é}S(E[MW/] = max Fr_,(D:1) = Fr_(Dy).
Proof. Follows by Lemma 1 and corollary assumptions as for
D= 2, A S S, ]E[Mﬂ/] = M1~(FR7‘_,(D1) — FRﬂ_/ (Do)) =
1-Fr_,(D1)—0=Fg_ (D). O

The importance of Corollary 2 lies in the fact that when
z = 2, the expected FoM E[M] is fully determined by the
CDF Fg_(Dy). Therefore, the optimal search order is the one
that maximizes CDF at D-. This allows us to show that such
an optimization can be formulated as a probability collection
problem under budget constraints.

According to the definition by Golden et al. [38], the
orienteering problem is defined as follows.

Def. 3 Orienteering problem (OP). Consider a set of nodes
N ={1,...,|N|}, where each node i € N is associated with
non-negative reward r;. Two nodes s, € N are designated as
start and end nodes, respectively. If an edge exists between
nodes ¢ and 7, the non-negative travel cost between % and j is
d(i,7). The goal of the OP is to determine a path, limited by a
given time budget T},,«, that visits a subset of N and maximizes
the total collected reward. It is assumed that rewards can be
added across nodes and that, while a node may be visited more
than once, its reward is obtained only once.

Reduction. In the one-deadline (z = 2) case, the search
problem, in which search must start from some designated
tile 79, can be reduced to the OP as follows.

1) Create a node 7 in N for each tile 7; € 7, and add artificial
nodes s,t that will serve as start and end nodes for the
OP.

2) Assign node i reward p; where p; = P[{w}] s.t. o(w) = 7,
i.e., the probability that the TAP originates at ;. Artificial
nodes s,t are assigned zero reward.

3) Create edges between every pair of nodes arising from
tiles, and between all such nodes and both s and ¢.

4) Define the travel cost d(i,j) as follows:

m(TiaTj)+%Ci+%Cj7 le,jg{S,t},
m (10,75) + 5Cj + B,
%Ci + B)

d(i,j) = ifi=s,

if j=t,

where B is a constant chosen to be both >
max; ; m (7’1‘, 7'7) and > %
5) Set the time budget T« = 28 + D;.
Intuitively, the reduction distributes the dwell-time of a tile
onto its incident edges, so that a path passing through the
corresponding node once pays the dwell time. The large value
B enforces the triangle inequality when s and ¢ are added (our
heuristics and known approximations for the OP require metric
distances) and prevents paths that meet the time budget from
visiting these nodes multiple times or using them as shortcuts.

Lemma 2. The constructed graph for the orienteering problem
in Section VI defines a metric distance on its edges.

Proof. Let u,v,w be any three vertices of this graph that are
connected in a triangle. We show the triangle inequality holds.
If none of w, v, w are s or ¢, we have that d(u,v) + d(v,w)

1 1
= m(Tuv Tv) + m(Tm Tw) + icu + Cv + icw

1 1
> m(Tuva) + icu + écw = d(ua w)'



If (WLOG) the triple is s, u,v, neither v nor v can be
t. The edges involving s each have weight at least B, so
d(u, s) + d(s,v) > d(u,v). Moreover, d(u,v) + d(v, s)

1
= m<TuaTv) + m(TvaTO) + §Cu + Cu + B

1
> m(7y,T0) + §Ou + B = d(u, s).

If (WLOG) the triple is u,v,t, neither u nor v can be
s. The edges involving ¢ each have weight at least B, so
d(u,t) + d(t,v) > d(u,v). Moreover, d(u,v) + d(v,t)

1 1
=m(ru,n)+50u+cv+32 5Cmthd(u,ﬁ) O

Example 3. To illustrate the reduction, we return to the tile
configuration shown in Fig. 3. Assume this time that the optical
telescope is initially focused on tile To. Since the probability
p1 = 0, we exclude tile Ty from consideration.

Fig. 5. Extending the example from Fig. 3 to illustrate the reduction to OP,
assuming the optical telescope starts at 7.

A start node s is added; its distance to node 2 is
d(s,2) = Cy/2 + B = 0.5 + B since no actual movement is re-
quired to reach tile 1o, but still captures its dwell time. Distances
to nodes 3 and 4 do capture the telescope’s movement times:
d(s,3) = m(rm2,m3)+C3/2+ B =2+1/2+ B =25+ B,
and similarly for d(s, 4). Distances among nodes 2, 3, and 4 cap-
ture the dwell times of both corresponding tiles, e.g., d(2,4) =
m (72,74) + C2/24+ Cy/2 =2+41/2+410/2 = 7.5. An artifi-
cial end node t is also added. Its distances from nodes 2, 3, and 4
are computed as d(i,t) = C;/2+ B, e.g., d(4,t) = 10/2 + B,
which allows the dwell time of tile T4 to be captured.

Equivalence. Let I; be an instance of the search problem,
and let I, be its constructed OP instance. There is a close
connection between s—t paths in I, and search orders in Ig:

Lemma 3. I, has a search order 7 that begins at Ty and achieves
probability P of detection by deadline D, iff I, has a path that
finishes by Ty,.x and achieves total reward P.

Proof. For any valid search order 7 in I, there is a unique
corresponding simple orienteering path II in [, obtained
by dropping 79 from m and adding endpoints s,t to the
corresponding path of nodes. Let ¢(7) be the total cost (traversal
plus dwell time) associated with 7, and let £(II) be the total
length of II. Finally, let (II) be the total reward of all nodes
in an orienteering path, and or equivalently the total probability
of all tiles (except 79) in a search order.

Observation 1: ¢(I1) = ¢(7) + 2B. Indeed, we know that

Z m(Ty, 7o) + Z C.,.

(Tu,To)ET Ty €T

e(m) =

Because II has no repeated nodes and incurs the added
length B only at its first and last edges,

() =Y d(u,v)= Y m(ru,m)+ Y Cr, +2B.

(u,v)€Il (Tu,To)ET TyET

Observation 2: A path in I, from s to ¢ of length < 2B+ D
never visits s or ¢ except at its endpoints. Indeed, if path II
visits node z € {s,t} other than at its endpoints, the two edges
to and from z have length at least 23, in addition to the length
of at least 2B required to leave s initially and arrive at ¢ finally.
Hence, the total length of the path must be at least 43, which
is greater than 2B + D by our choice of B.

(—) Given search order 7 in I, that starts with 7o and ends
at 7, by time D, set II to [s,m — {70}, t]. By Observation 1,
¢(IT) = ¢(m) + 2B, and so £(IT) < D+ 2B. Moreover, r(II) =
r(r), since the nodes of nonzero reward touched by II exactly
match the tiles of nonzero probability touched by 7.

(+) Given IT in I, of length < 2B + D, by Observation 2,
IT has s and ¢ only at its endpoints. Let I’ be the simple path
obtained by enumerating nodes of II in order of their first
appearance. T’ exists in I, because its graph is complete; by
the triangle inequality, ¢(IT") < ¢(II) < 2B + D. Now form
in I, by removing the endpoints of II" and prepending 79; by
Observation 1, ¢(7) = ¢(II) — 2B < D. We have r(II) = r(m)
by correspondence of the two paths’ node and tile sets. [

Hardness of Search Problem. Blum et al. [17, Theorem 7.2]
show that OP (with fixed start but not fixed end node) is APX-
hard. Our search problem generalizes this formulation of OP;
hence, we have the following:

Corollary 3. The search problem (Section I) is APX-hard, even
if there is only one deadline and all dwell times C; = 0.

This result indicates that exact methods are generally too
time-consuming for practical applications, requiring heuristic
approaches. Building on Section IV, the next section proposes
GCP, a real-time-capable heuristic for the search problem.

Approximability of Search Problem. The reduction from
search to OP is approximation-preserving, so approximation
algorithms for OP give approximation algorithms for search.

Corollary 4. If A is an algorithm that finds an c-approximation
to the max-reward path for the OP, then A can be used to
construct an «-approximation for the search problem.

Proof. Based on the correspondence established in Lemma 3,
given an optimal path II for orienteering instance I, built from
search instance I, the corresponding search order 7 in Iy must
also be optimal. Moreover, if A finds a feasible path for I,
with reward P, the corresponding search order also has total
probability P. Thus, A’s approximation ratio vs the optimum
in I, also applies to the induced search order in I,. O

VII. GREEDY-CHRISTOFIDES PATHFINDING ALGORITHM

Chekuri et al. [26] give a (24¢)-approximation algorithm for
the orienteering problem (OP) that employs a recursive dynamic
programming framework with tree decompositions. While this



Probability ———

0.00005 0.00010

0.00000

Fig. 6. Probability map for GRB from COSI instrument simulations [28].

method offers strong theoretical guarantees via Corollary 4, its
time complexity is impractical for real-time decision-making,
such as telescope follow-up for transient events, where a path
must be computed within seconds of an alert.

To better balance computational speed with solution quality,
we propose an efficient heuristic, Greedy-Christofides Pathfind-
ing (GCP), outlined in Algorithm 1. Our approach decomposes
the planning process into two stages: (i) subset selection and
(ii) deadline-aware s—t path construction.

Subset Selection. We apply two parallel strategies to generate
candidate subsets of tiles: a probability-based strategy that
selects the top k tiles ranked by probability, and a spatially
adaptive strategy that incrementally grows the subset by
greedily adding tiles with the highest probability-to-distance
ratio. Distance here is measured from the nearest already
selected tile. For a given candidate subset of tiles, GCP will
construct an s—t path that touches the corresponding set of
nodes in the constructed OP instance.

These complementary strategies are motivated by spatial
patterns commonly observed in gravitational-wave probability
maps. The probability-based approach is well-suited to compact,
high-density confidence regions (e.g., Fig. 6). In contrast, the
spatially adaptive strategy is more effective when probability
mass is dispersed across multiple clusters, especially when
these clusters are far apart (e.g., Fig. 2). We run our heuristic
with both strategies in parallel and keep the solution with
highest utility, thereby allowing it to adapt dynamically to
different topological structures in the sky map.

Path Construction. Given a candidate subset of tiles, we
construct an s—t path (corresponding to a search order) visiting
every tile in this subset using Hoogeveen’s modification of
Christofides’ minimum-spanning-tree heuristic [44], which
yields a %-approximation for the minimum-weight undirected
s—t path spanning the chosen subset.

Two-Phase Search. The heuristic uses a two-phase search to
determine the largest feasible subset that yields a valid path
within the time budget. The search is performed separately, in
parallel, for the two subset selection strategies. In the initial
doubling phase, the subset size k is incrementally doubled
from a small initial value. For each k, an MST is computed
over the tiles selected by the considered strategy. Since the
MST cost provides a lower bound on any feasible s—t path, if
it exceeds the budget, further expansion is halted.

The subsequent binary search phase searches between the
last feasible and first infeasible subset sizes. For each size k’,
full s—t paths are constructed using the modified Christofides
procedure on the selected tiles. If the path cost lies within the

Algorithm 1 Greedy-Christofides Pathfinding (GCP)

Require: Set of tiles 7, rewards {p; : 7; € 7}, travel cost function
d(i, j), time budget T', start node s, end node ¢
1: best path Thest < (), best reward sum Phegt < 0

2: for each tile-sorting strategy do

3: subset size k < 2 > Doubling phase
4: while true do

5: Select top k tiles

6: Construct MST over selected tiles using d(7s,7;)

7 if MST cost exceeds 1" then

8: break

9: k < 2k

10 kmin < |k/2], kmax < k > Binary search phase
11: while kmax - kmin >1do

12: k' < | (kmin + kmax)/2]

13: Select top £’ tiles

14: Construct MST over selected tiles

15: if MST cost exceeds 7' then

16: kmax <— k'

17: else

18: Construct s—t path using Hoogeveen’s algorithm
19: Compute path cost C' and total reward P
20: if C < T then

21: update Tpest, Phest
22: kmin < k'

23: else
24: kmax < K’

25: return Tpes, Phest

time budget, the best solution is updated, and the algorithm
explores larger subsets; otherwise, it searches smaller ones.
This continues until a largest feasible subset is identified.

For each of the two subset selection strategies, this two-phase
search procedure produces a candidate s—t path that satisfies
the time budget constraint. The final output is the path with
the higher expected reward among the two.

The heuristic is designed to run efficiently while adapting
to real-time constraints. To further improve path quality
without significantly increasing computation time, we apply
two lightweight post-processing steps. First, a single-pass 2-
opt heuristic is applied to remove potential edge crossings
and reduce travel cost. Then, we perform a greedy insertion
of unvisited nodes before the terminal node ¢, selecting the
highest-reward node that can be added without violating the
time budget. This allows the algorithm to collect additional
rewards within the remaining budget opportunistically.

Time Complexity. GCP’s runtime is bounded by O(n?logn).
This guarantee makes GCP particularly suited for real-time
search problems. Moreover, GCP achieves strong empirical per-
formance across realistic TAP follow-up scenarios consistently
identifying high-quality search orders, as shown in Section IX.

VIII. MULTI-DEADLINE APPROXIMATIONS

We further leverage the orienteering problem (OP) and
Corollary 4 to exhibit the polynomial-time tractability of our
search problem when extended to the two-deadline and k-
deadline cases (where here k £ z —1 is the number of mission
FoMs, for z as defined in Section III). The theoretical approach
to leveraging single-deadline algorithms to give k-deadline



guarantees is also efficient enough to inform heuristics for
k-deadline instances.

Here we let SP;, denote our TAP search problem with k
deadlines, and let A be an algorithm for SP; with approximation
ratio . Corollary 4 together with prior work on the OP [26]
provides a P-time A with o = 2+¢ for any fixed € > 0. We also
let the merit aspect ratio of an instance be 3 = M, /My > 1
and let () denote the total reward of search order 7.

The Two-Deadline Search Problem. We start with a simple
reduction from SP, to SP;.

Intuitively, the following theorem shows that an approxima-
tion can be obtained by solving two instances of the single-
deadline problem, one for each deadline D;, with rewards
scaled by M, then taking the path which gives the better
collected (scaled) reward.

Theorem 2. Given an instance I of SP,, let I} and I? be
derived by setting Ms < 0 in I; and by setting My < M5 in
I, respectively, and let 7" = A(I?) fori € {1,2}. Then the 7*
maximizing r(r') is a 2a-approximation for SP;.
Proof. Let the optimal two-stage solution to Ig be
m* = 7] U735, where 7] is the sequence of nodes visited (and
rewards collected) by OPT before deadline D,, and 73 is the
nodes visited and rewards collected by OPT between D; and
D,. Note that r(7*) = ry(n7) +r2(75), where 71 (+) and r2()
denote the rewards of paths in instances I} and I2, respectively.
Note also that 7} is feasible for I} and 7} U 7} is feasible
for I2. Then on the one hand, by our SP; algorithm we have

a-r(m) =a-ri(r) > r(OPT(IL) > ri(n}).
On the other hand, applying A to I2 gives
a-1(m) > a-ro(mg) > ro(OPT(I2)) > ro(n*) > ro(ny).
Combining, we have 2« - max(r(my ), r(m2)) > (7). O
We can also provide a S-dependent improvement:

Theorem 3. Given an instance I, of SP,, let I‘f be defined as
in Theorem 2. Then A(I2) is an « - 3-approximation.

Proof. Let the optimal two-stage path on I be 7* = 7] U 75.

Furthermore let 7 = A(I2), and let OPT(I2) denote the
optimal one-stage path. By the guarantee for A on I2,

a-r(m) > a-ro(n) > ro(OPT(I2)) > ro(n*),
while, recalling that 3 £ M, /Mo,
Bro(m”) =B ra(mi) + B ra2(m3)
2 B ra(my) 4 ra(m3) = r(7").
Combining these inequalities gives the stated claim. O

Taken together, this implies that the algorithm proposed in
Theorem 2 is an « - min(2, 3)-approximation for SP,.

The k-Deadline Search Problem. A natural approach for the
many-deadline case is to reduce to orienteering with time
windows [12], wherein node rewards arrive and depart at

specified times. The closest analog is the common-start, few-
deadline variant, for which Chekuri and Kumar [25] claim
a polynomial-time (« + 1)-approximation for fixed k (and
polynomial discretization of time). However, it is unclear if
the approximation-preserving reduction to OP (Corollary 4)
generalizes to multiple deadlines. Nevertheless, we provide a
k-deadline guarantee by generalising Theorem 2.

Intuitively, the following theorem suggests solving an
instance of the single-deadline problem for each of the &
deadlines, with the rewards scaled by the corresponding FoM,
then taking the best such path.

Theorem 4. Given an instance I, of SPy,, for eachi € [k] let
I; be the derived SP; instance with deadline D; and FoM M.
Let each m; = A(I%) be an a-approximation to the SP; instance
I%. Then the 7; maximizing r(m;) is an o - min (k, 2 - log,[3])
approximation.

Proof. Let the optimal Fk-stage solution to Ig be
™ =miU...Um;, where 7} is the sequence of tiles
visited (and rewards collected) by 7* between deadlines D;_1
and D;. Let r;(-) be the rewards of paths in instances I’; then
r(m) =3 ril(m).

If 7%, denotes the prefix of 7* before deadline D;, then
note also that each 7} is feasible for I. Then on the one hand,
by our SP; algorithm A and since FoMs are decreasing,

a-r(m) > a-ri(m) > ri(OPT(I) > ri(mZ;) > i)

Summing over all ¢ € [k] then yields

a- Y r(m) =Yy rial) =r().

i€[k] 1€[k]
Since the maximum upper-bounds the average, we have

1
a-k-max(r(m)) >a- k- — r(m) > (™).
() 2 0 3 ) > o)

This demonstrates the proposed algorithm is an « - k-
approximation. The log 5 guarantee follows directly by bucket-
ing together phases that have FoMs within a factor of two. [

I1X. EVALUATION

We compare both the solution quality (measured in terms of
the expected FoM E[M)]) and the computational efficiency of
the proposed GCP (Algorithm 1) to the following baselines:

« Genetic: a stochastic baseline that explores the solution
space using evolutionary search.

o Greedy: a standard heuristic in the astrophysics literature
(e.g., [66, 67]) that at each step selects the unvisited tile
with the highest probability.

« ILP: the optimal solution obtained from an exact integer-
linear-programming formulation following [78, Section
2.3.1], solved using Gurobi [43], and used as the ground
truth for evaluating approximation quality.

The experiments are conducted on a collection of 37 sky
probability maps derived from real LIGO events [2, 4]. They
were run on a server with 2x Intel Xeon Gold 5118 12-core
CPUs with HyperThreading enabled and 196 GB of RAM.



A. Experiment Setup

The dataset includes 13 small- and 24 large-scale instances,
curated to reflect diverse probability distributions derived from
real non-optical instruments. We use the methods in [37] to
define tiles by projecting the telescope’s FoV over HEALPix
representations of the LIGO probability maps, fixing the pixel
with the highest probability directly above the telescope, then
considering just those pixels within the visible hemisphere.

We define a small instance as a probability map in which
the top 100 tiles, ranked by probability, collectively account
for at least 80% of the total probability mass. To determine
this, we extract the top 100 (or all tiles if fewer than 100
exist), compute their cumulative probability, and use them as
the test set if the cumulative mass exceeds 80%. Otherwise,
the instance is discarded. This setup ensures computational
tractability for comparison with the ILP baseline and enables a
detailed assessment of solution quality. To generate a sufficient
number of small instances, we project a 10 x 10° FoV; optical
observatories that are equipped with multiple telescopes can
be configured to provide such a wide FoV by arranging the
individual telescopes so that their FoVs are adjacent.

We define large-scale probability maps as instances where the
probability is broadly distributed across the sky. Specifically, we
retain the full 99% containment region for each selected event,
which typically comprises 1,000-6,000 tiles when projecting a
smaller 2.5 x 2.5° FoV. We keep any instances where 1,000—
10,000 tiles are retained. These instances are intended to
emulate realistic operational scenarios in telescope scheduling,
where sky localization regions are large and resources are
significantly constrained.

Each tile is associated with a detection probability, and the
pairwise traversal cost between tiles incorporates both angular
slew time and dwell time. The start tile for each instance
was taken to be the tile of highest probability so as to avoid
measuring the confounding, instance-dependent effect of an
initial slew from an arbitrary starting position. For each instance,
the objective is to compute a search order that maximizes the
expected FoM as per Lemma 1.

Dwell Times. A complete derivation of the dwell time C; for
each tile 7; requires in-depth knowledge of the participating
telescope’s optical properties, the TAP’s flux as indicated by
the high-energy detecting instrument, and atmospheric opacity
in the wavelengths corresponding to the telescope’s spectral
sensitivity. As a simple approximation to provide sufficient
realism for illustrative purposes in our evaluation, we consider
that the dwell time increases as the telescope approaches the
horizon due to the additional atmosphere through which it
must look. We compute air mass for a given zenith angle 6 in
radians using the Kasten & Young model [47]:

—1
AM = [cos@ +0.50572 (96.07995 — 1809/@‘1'6364}

We then use the Simple Model of the Atmospheric Radiative
Transfer of Sunshine (SMARTS) [41] to estimate the rela-
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Fig. 7. Average percentage deviation from ILP baseline across deadlines.
Shaded region denotes observed deviation ranges.

tive irradiance of 780nm light* as a function of air mass:
s =1.1129¢9197AM Under the assumptions that (i) a target
signal-to-noise (SNR) ratio in the optical data is required to
identify the TAP in a given tile, (ii) signal scales with exposure
time, and (iii) noise scales with the square root of exposure
time, dwell time is C; = Cy/s%, where Cj is the dwell time
at the zenith; for our experiments, we assume Cj is 1 second.

Move Times. The time required for the telescope to move
between two sky tiles depends on the angular distance between
them and the telescope’s slew rate. Each tile 7; is associated
with a sky position specified in equatorial coordinates (c;, d;).
Given two tiles 7; and 7;, the angular separation ¢;; between
them is computed using the spherical law of cosines:

0;; = arccos [sin(0;) sin(d;) 4 cos(d;) cos(d;) cos(a; — ;)]

In our experiments, we adopt a constant slew rate of 50°/s,
consistent with the fast-slewing direct-drive Planewave mounts
used by recent and upcoming observatories, e.g., 7DT [48].

B. Expected FoM Comparison on Small Maps

Goal and setup: This experiment evaluates the approximation
quality of GCP, Genetic, and Greedy relative to the ILP
baseline on small-scale search instances, where exact solutions
are computationally feasible. The objective is to maximize
the expected FoM E[M] under a single-deadline setup across
deadlines ranging from 10 to 90 seconds in increments of
10. The reported metric is the percentage deviation from the
ILP-optimal E[M], averaged over 13 probability maps.

Observations: As shown in Fig. 7, GCP consistently
achieves deviations within 0.05% of the optimal E[M] across
all deadlines, exhibiting the best performance overall. The
Genetic method follows closely, with slightly higher deviations.
In contrast, the Greedy baseline shows significantly worse
performance, especially under tight deadlines (e.g., 10-50
seconds), where its average deviation reaches up to 7%. The
shaded area (indicating 95% confidence intervals) around the
Greedy curve shows substantial variability, while GCP and
Genetic results remain consistently stable. In all these trials,
GCP returned a search order in around 0.01s, compared to
around 1s for the Genetic method and <10~*s for Greedy.

Conclusions: These results confirm that GCP offers robust
and near-optimal performance on small-scale instances. It out-

2780nm red light is at the end of the visible spectrum, and is captured by
the near-infrared filters used in several sky surveys [24, 53, 64, 72, 82].
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performs both heuristic baselines in accuracy while maintaining
significantly better runtime efficiency over the Genetic method.
Its minimal deviation from ILP warrants its use in time-sensitive
settings where exact solutions are computationally infeasible.

C. Expected FoM and Efficiency Comparison on Large Maps

Goal and setup: Similarly to the previous experiment, this ex-
periment’s goal is to evaluate the scalability and solution quality
of GCP and the baselines. This time, we consider the large-
scale search problem instances, where exact methods such as
ILP are computationally infeasible. As before, the objective is
to maximize E[M] across mission deadlines, this time ranging
from 10 to 1200 seconds in the set {10, 100, 200, ..., 1200}.
The reported metric is the percentage deviation from the GCP-
resulting E[ M|, averaged over the 24 probability maps.

Observations: Fig. 8pers shows that GCP consistently yields
the highest E[M] result across all deadlines. Genetic follows
closely (within at least 1.6% of the GCP’s E[M]) but
consistently remains below GCP across all deadlines, with
larger deviations observed under shorter ones (100 to 500
seconds). Greedy shows several orders of magnitude lower
performance, and is thus not shown in the figure.

Fig. 8Rignt reports computation times with the shaded area
indicating 95% confidence interval. Greedy is the fastest
method, with execution times consistently below 10~ seconds,
but it also yields the lowest E[M]. Genetic is the slowest
and most variable, with runtimes occasionally approaching
100 seconds. GCP strikes a favorable balance, exhibiting
predictable scaling with deadlines and maintaining execution
times below 10 seconds, with an average of 1 second across
all evaluated horizons. It is important to note that GCP is
implemented as a dual-threaded algorithm, whereas Genetic
parallelizes across all 24 physical cores.

Conclusions: These results reconfirm GCP’s advantage in
achieving a robust trade-off between computation time and
solution quality even in realistic large-scale search scenarios.
It consistently achieves nearly the highest E[M] results while
maintaining predictable computation time on limited cores,
making it a desirable choice for real-time telescope scheduling.

D. Impact of Computation Time on the Expected FoM

Goal and setup: In real-time optical follow-up missions,
the utility of a TAP search strategy depends not only on the
quality of the computed path but also on how quickly it can be
produced. Since planning itself consumes time, algorithms must
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account for this delay when operating under mission deadlines.
Let Dy, be an arbitrary deadline and WCET),,, the worst-case
computation time of method m € {GCP, Genetic, Greedy}.
Then the effective planning horizon is D) = Dy — WCET,,
as the generated search plan can begin execution only once
computation has completed. This experiment evaluates the
resulting effect on overall expected FoM for GCP, Genetic,
and Greedy. For each combination of method, deadline, and
sky map, we ran five trials and recorded the maximum observed
execution time (MOET); these values were then subtracted from
the nominal deadlines before computing the search orders.

Observations: The MOET was 67 seconds for Genetic,
197ms for GCP, and 108 us for Greedy. Fig. 8ps shows
the average E[M] of each method across deadlines, while
Fig. 8Rrignt reports the corresponding E[M] deviation from
GCP under the adjusted deadlines D). Both plots suggest
that when MOET Genetic 1S accounted for, Genetic suffers a
significant E[M] degradation, particularly at short deadlines
where the effective planning window is severely reduced. And
even accounting for its MOET, GCP retains an E[M] at least
as high as Greedy’s, even at short deadlines where Greedy’s
short MOET allows a larger search budget.

Conclusions: The results demonstrate that accounting for
computation time is essential in time-sensitive missions. Meth-
ods like GCP that maintain low and predictable runtime are
better suited for real-time applications, as they preserve more
of the mission deadline for actual execution. In contrast, slower
methods like Genetic may lose significant utility, as the solver
consumes a non-negligible portion of the planning horizon.

E. A Closer Look at Response-Time Awareness

Goal and setup: This experiment evaluates GCP in a
multi-deadline planning context, where the utility of a suc-
cessful detection depends on its timing. As formalized in
Section III, each deadline D, is associated with an FoM M;,
representing decreasing scientific value for later detections.
Once again, the objective is to find a search order that
maximizes E[M]. We consider a timeline with deadlines
{D1,D3,D3} = {100,200,500} seconds and associated
FoMs {My, My, M3} = {1.0,0.5,0.2}. For each deadline,
we report the cumulative value FE(Dy) of the partial value
of E[M] collected up to Dy, i.e., more formally defined
E(Dy) 2 YF M, (Pr_(D;) — Fr_(D;_1)). This is done
for three search orders (SO1, SO2 and SO3), each constructed
according to the principles formalized in Theorem 4:
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e SOI: GCP(D,) followed by GCP(Ds — D)

e SO2: GCP(Dy) followed by GCP(Ds — D3)

e SO3: GCP(D3) (single long path)
The results are reported for two illustrated maps (see Fig. 10)
that have significantly different probability distributions.

Observations: The results show that the concerns laid down
in Section IV remain valid even for real spatial probability
maps, namely an algorithm should explore a broad search space
as local strategies may risk hindering mission’s performance.
For instance, in Fig. 10%P SOJ is preferred for D; = 100
while SO3 has the lowest partial FoM score. However, through
deadline D3 this ranking is completely reversed. A similar
inversion occurs between SO2 and SO/ in Fig. 10gettom.

Conclusion: Notably, the application of Theorem 4 using
GCP enables adaptive planning without succumbing to short-
sighted, locally optimal choices that may jeopardize success.

X. RELATED WORK

Timing aspects of space-related applications have long been
recognized within the real-time systems community (e.g., [S0-
52, 54, 74]). To model them in our problem (Section V), we
adapted the well-known concept of response-time analysis [46].
To consider the probabilistic counterpart, we adapted the multi-
evolution semantics developed in recent works on probabilistic
analysis [20, 55, 56]. Furthermore, Theorem 1 utilizes the
temporal aspects of stochastic dominance between response-
time distributions, a topic extensively studied in real-time
systems (e.g., [20, 32-34]). For a broader overview, we refer
the reader to the surveys by Davis and Cucu-Grosjean [32, 33].

In Section VI, we showed that the considered search problem
reduces to the orienteering problem (OP). The OP, introduced
in the seminal work by Golden et al. [38], has myriad variants,
including the s-t orienteering problem, team orienteering, and
time-dependent orienteering. For comprehensive overviews, we
refer the reader to surveys by Gunawan et al. [42], Saller et al.
[69], Vansteenwegen et al. [79]. Related to OP is the budgeted
prize-collecting traveling salesperson problem, which aims to
maximize the number of visited nodes under one or more time
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constraints [62, 63]. Prior work on heuristic and exact methods
has also considered dwell times (i.e. wait costs, service times,
processing times) [10, 27, 70]; but the single-deadline reduction
to OP (Section VI) is to our knowledge novel.

The astrophysics community has developed a rich body of
work focused on search strategies for transient astrophysical
phenomena (TAPs), such as kilonovae. Early efforts focused
on prompt follow-up observations using optical telescopes
based on alerts from wide-field gamma-ray detectors (e.g.,
[36]). More recent work has explored coordinated tiling strate-
gies to optimize sky coverage under visibility and telescope
constraints [5, 7, 30, 66]. These methods primarily focus
on HEALPix-based probability maps, attempting to balance
latency, sensitivity, detection accuracy, and FoV limitations.

The key distinction of our work is that prior approaches do
not explicitly model expected scientific utility as a stochastic,
time-aware optimization problem, nor do they incorporate a
strict, deadline-driven timing model as we propose in this paper.

XI. CONCLUSIONS AND FUTURE WORK

The problem of planning efficient telescope observations for
transient astrophysical phenomena (TAP) lies at the intersection
of real-time systems, operations research, astrophysics and
cyber-physical systems. Addressing this challenge requires
both theoretical rigor and practical efficiency, particularly under
stringent timing constraints. In this work, we introduced the
first formal stochastic, response-time and scientific-merit aware
model for TAP search planning, capturing the temporal and
probabilistic nature of the problem. We showed that the problem
is APX-hard and reduces to a variant of the Orienteering Prob-
lem, motivating the design of a novel, real-time-capable heuris-
tic: Greedy-Christofides Pathfinding (GCP). GCP achieves a
strong trade-off between computational efficiency and solution
quality by combining probability-based and spatially adaptive
strategies with deadline-aware path planning. For multiple
deadlines, we established worst-case performance guarantees
by proving an « - min (k, 2log,[S])-approximation bound.

Empirical results on real LIGO gravitational-wave probability
maps demonstrate that: (i) for ILP-tractable problem instances,
GCP yields near-optimal solutions with predictable runtime;
(ii) it consistently outperforms baseline heuristics in solution
quality; (iii) it remains robust across diverse probability-map
scenarios, maintaining high solution quality under realistic
operational conditions. Finally, (iv) results suggest that GCP is
an effective planning method for real-time TAP localization, en-
abling broad and adaptive search without succumbing to short-
sighted strategies, constituting a step toward reliable scheduling
pipelines for next-generation time-domain astronomy.

Opportunities remain to consider generalizations of our
model in future work. For example, we might consider that a
TAP’s optical luminosity changes as it evolves, giving rise to
non-constant dwell times with increasing detection probability
over longer observations. Furthermore, the well-separatedness
of the LIGO probability map in Figure 2 suggests that multiple
optical telescopes could be deployed for coordinated search.



ACKNOWLEDGMENT

This work was supported by NSF grants CNS-2141256,
CNS-2229290 (CPS), and CNS-2502855 (CPS), NASA award
8ONSSC21K1741, and a Washington University OVCR seed
grant. We would like to thank the reviewers for their thorough
and insightful feedback. We would also like to acknowledge
the members of the ADAPT collaboration, which inspired this
work. To Matthew Andrew, Blake Bal, Elisabetta E. Bissaldi,
Richard G. Bose, Dana Braun, James H. Buckley, Eric Burns,
Marco M. Cecca, Davide Cerasole, Roger D. Chamberlain,
Wenlei Chen, Michael L. Cherry, Federica F. Cuna, Gaia G.
De Palma, Davide D. Depalo, Riccardo R. Di Tria, Leonardo L.
Di Venere, Jeffrey Dumonthier, Manel Errando, Stefan Funk,
Fabio F. Gargano, Priya Ghosh, Francesco F. Giordano, Jonah
Hoffman, Aldana A. Holzmann Airasca, Ye Htet, Zachary
Hughes, Aera Jung, Patrick L. Kelly, John F. Krizmanic,
Makiko Kuwahara, Calvin Lee, Francesco F. Licciulli, Antonio
A. Liguori, Gang Liu, Pierpaolo P. Loizzo, Leonarda L. Lorusso,
Mario Nicola Mazziotta, John Grant Mitchell, John W. Mitchell,
Boris Murmann, Georgia A. de Nolfo, Jennifer Ott, Giuliana
G. Panzarini, Richard Peschke, Riccardo Paoletti, Roberta
R. Pillera, Brian Rauch, Davide D. Serini, Garry Simburger,
George Suarez, Teresa Tatoli, Gary S. Varner, Eric A. Wulf,
Adrian Zink, and Wolfgang V. Zober, we extend our thanks.

REFERENCES

[1] M. G. Aartsen et al., “The IceCube Neutrino Observatory:
instrumentation and online systems,” Journal of Instrumentation,
vol. 12, no. 03, p. P03012, 2017.
A. G. Abac, R. Abbott, I. Abouelfettouh, F. Acernese et al.,
“Observation of gravitational waves from the coalescence of a
2.5-4.5 solar mass compact object and a neutron star,” The
Astrophysical Journal Letters, vol. 970, no. 2, p. L34, Jul. 2024.
[Online]. Available: http://dx.doi.org/10.3847/2041-8213/ad5beb
B. Abbott et al., “LIGO: The laser interferometer gravitational-
wave observatory,” Reports on Progress in Physics, vol. 72, no. 7,
p- 076901, 2009.
R. Abbott et al., “Open data from the third observing run of
LIGO, Virgo, KAGRA, and GEO,” The Astrophysical Journal
Supplement Series, vol. 267, no. 2, p. 29, jul 2023. [Online].
Available: https://dx.doi.org/10.3847/1538-4365/acdc9f
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), “Multi-messenger observations of a binary
neutron star merger,” The Astrophysical Journal Letters, vol.
848, no. 2, p. L12, 2017.
M. Ageron et al., “ANTARES: the first undersea neutrino
telescope,” Nucl. Instrum. Methods Phys. Res. A, vol. 656, no. 1,
pp. 11-38, 2011.
T. Ahumada, S. Anand, M. W. Coughlin, I. Andreoni, E. C.
Kool, H. Kumar, S. Reusch, A. Sagués-Carracedo, R. Stein,
S. B. Cenko et al, “In search of short gamma-ray burst
optical counterparts with the Zwicky Transient Facility,” The
Astrophysical Journal, vol. 932, no. 1, p. 40, 2022.
R. Artola et al., “TOROS optical follow-up of the advanced
LIGO-VIRGO 02 second observational campaign,” Monthly
Notices of the Royal Astronomical Society, vol. 493, no. 2, pp.
2207-2214, 2020.
K. Asano, “Early gamma-ray afterglow from gamma-ray bursts,”
in Proceedings of 38th International Cosmic Ray Conference —
PoS(ICRC2023), vol. 444, 2023, p. 633.
[10] N. Ascheuer, M. Fischetti, and M. Grotschel, “Solving the
asymmetric travelling salesman problem with time windows

(2]

[3

—

(4]

(5]

(6]

[7

—

[8

—_—

(9]

13

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

by branch-and-cut,” Mathematical programming, vol. 90, pp.
475-506, 2001.

W. Atwood, A. A. Abdo, M. Ackermann, W. Althouse, B. Ander-
son, M. Axelsson, L. Baldini, J. Ballet, D. Band, G. Barbiellini
et al., “The large area telescope on the Fermi gamma-ray space
telescope mission,” The Astrophysical Journal, vol. 697, no. 2,
p- 1071, 2009.

N. Bansal, A. Blum, S. Chawla, and A. Meyerson, “Approxi-
mation algorithms for deadline-TSP and vehicle routing with
time-windows,” in Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, 2004, pp. 166—174.

S. Baruah and P. Ekberg, “Towards efficient explainability of
schedulability properties in real-time systems,” in 35th Euromicro
Conference on Real-Time Systems (ECRTS 2023). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2023, pp. 2-1.

E. Berger, “Short-duration gamma-ray bursts,” Annual review of
Astronomy and Astrophysics, vol. 52, no. 1, pp. 43-105, 2014.
E. Berger, C. Leibler, R. Chornock, A. Rest, R. Foley, A. M.
Soderberg, P. Price, W. Burgett, K. Chambers, H. Flewelling
et al., “A search for fast optical transients in the Pan-STARRS1
medium-deep survey: M-dwarf flares, asteroids, limits on extra-
galactic rates, and implications for LSST,” The Astrophysical
Journal, vol. 779, no. 1, p. 18, 2013.

D. Bersanetti et al., “Advanced Virgo: Status of the detector,
latest results and future prospects,” Universe, vol. 7, no. 9, p.
322, 2021.

A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and
M. Minkoff, “Approximation algorithms for orienteering and
discounted-reward TSP,” SIAM Journal on Computing, vol. 37,
no. 2, pp. 653-670, 2007.

K. N. Borozdin, S. P. Brumby, M. C. Galassi, K. McGowan,
D. Starr, T. Vestrand, R. White, P. Wozniak, and J. A.
Wren, “Real-time detection of optical transients with RAPTOR,”
in Astronomical Data Analysis 11, J.-L. Starck and E. D.
Murtagh, Eds., vol. 4847, International Society for Optics and
Photonics. SPIE, 2002, pp. 344 — 353. [Online]. Available:
https://doi.org/10.1117/12.461102

W. J. Borucki, J. M. Jenkins, and R. M. Duren, “Science
merit function for the Kepler mission,” Journal of Astronomical
Telescopes, Instruments, and Systems, vol. 6, no. 4, pp. 044 003—
044003, 2020.

S. Bozhko, F. Markovi¢, G. von der Briiggen, and B. B.
Brandenburg, “What really is pWCET? A rigorous axiomatic
proposal,” in 2023 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2023, pp. 13-26.

D. M. Bramich, “A new algorithm for difference image analysis,”
Monthly Notices of the Royal Astronomical Society: Letters,
vol. 386, no. 1, pp. L77-L81, 05 2008. [Online]. Available:
https://doi.org/10.1111/j.1745-3933.2008.00464.x

J. Buckley et al., “The Advanced Particle-astrophysics Telescope
(APT) project status,” in Proc. of 37th Int’l Cosmic Ray
Conference, vol. 395, Jul. 2021, pp. 655:1-655:9.

J. Buhler and M. Sudvarg, “Real-time Likelihood Map Gen-
eration to Localize Short-duration Gamma-ray Transients,” in
Proc. 39th Int’l Cosmic Ray Conf., vol. 501, Jul. 2025, pp.
587:1-587:9.

K. Chambers et al., “The Pan-STARRSI1 surveys,” 2019.
[Online]. Available: https://arxiv.org/abs/1612.05560

C. Chekuri and A. Kumar, “Maximum coverage problem with
group budget constraints and applications,” in International
Workshop on Randomization and Approximation Techniques in
Computer Science. Springer, 2004, pp. 72-83.

C. Chekuri, N. Korula, and M. Pal, “Improved algorithms
for orienteering and related problems,” ACM Transactions on
Algorithms (TALG), vol. 8, no. 3, pp. 1-27, 2012.



[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

N. Christofides, A. Mingozzi, and P. Toth, “State-space relaxation
procedures for the computation of bounds to routing problems,”
Networks, vol. 11, no. 2, pp. 145-164, 1981.

Compton Spectrometer and Imager (COSI) Collaboration,
“COSI Data Challenges,” Apr. 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.15126188

M. W. Coughlin, T. Ahumada, S. B. Cenko, V. Cunningham,
S. Ghosh, L. P. Singer, E. C. Bellm, E. Burns, K. De,
A. Goldstein et al., “2900 square degree search for the optical
counterpart of short gamma-ray burst GRB 180523b with the
Zwicky Transient Facility,” Publications of the Astronomical
Society of the Pacific, vol. 131, no. 998, p. 048001, 2019.

M. W. Coughlin et al., “Efficient targeting of gravitational wave
sky localizations with Zwicky Transient Facility,” Publications
of the Astronomical Society of the Pacific, vol. 131, no. 1005, p.
048001, 2019.

K. Danzmann, LISA Study Team e al, “LISA: laser inter-
ferometer space antenna for gravitational wave measurements,”
Classical and Quantum Gravity, vol. 13, no. 11A, p. A247,
1996.

R. L. Davis and L. Cucu-Grosjean, “A survey of probabilistic
timing analysis techniques for real-time systems,” Leibniz
Transactions on Embedded Systems, vol. 6, no. 1, pp. 03—-1—
03:60, 2019.

, “A survey of probabilistic schedulability analysis tech-
niques for real-time systems,” Leibniz Transactions on Embedded
Systems, vol. 6, no. 1, pp. 04:1-04:53, 2019.

J. L. Diaz, J. M. Lopez, M. Garcia, A. M. Campos, K. Kim, and
L. L. Bello, “Pessimism in the stochastic analysis of real-time
systems: Concept and applications,” in 25th IEEE International
Real-Time Systems Symposium. 1EEE, 2004, pp. 197-207.

M. M. Fausnaugh, R. Jayaraman, R. Vanderspek, G. R. Ricker,
C. J. Burke, K. D. Colén, S. W. Fleming, H. M. Lewis,
S. Mullally, A. Youngblood et al., “Observations of GRB
230307A by TESS,” Research Notes of the AAS, vol. 7, no. 3,
p. 56, 2023.

N. Gehrels, E. Ramirez-Ruiz, and D. B. Fox, “The swift
gamma-ray burst mission,” Annual Review of Astronomy and
Astrophysics, vol. 47, pp. 567-617, 2009.

S. Ghosh, S. Bloemen, G. Nelemans, P. J. Groot, and L. R. Price,
“Tiling strategies for optical follow-up of gravitational-wave
triggers by telescopes with a wide field of view,” Astronomy &
Astrophysics, vol. 592, p. A82, Aug. 2016. [Online]. Available:
http://dx.doi.org/10.1051/0004-6361/201527712

B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,”
Naval Research Logistics (NRL), vol. 34, no. 3, pp. 307-318,
1987.

K. M. Gorski et al., “HEALPix: A framework for high-resolution
discretization and fast analysis of data distributed on the sphere,”
AplJ, vol. 622, no. 2, p. 759, 2005.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete
Mathematics: A Foundation for Computer Science, 2nd ed.
Reading, Massachusetts: Addison-Wesley, 1994.

C. Gueymard et al., SMARTS2: a simple model of the atmo-
spheric radiative transfer of sunshine: algorithms and perfor-
mance assessment. Florida Solar Energy Center Cocoa, FL,
USA, 1995, vol. 1.

A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering
problem: A survey of recent variants, solution approaches and
applications,” European Journal of Operational Research, vol.
255, no. 2, pp. 315-332, 2016.

Gurobi Optimization, LLC, “Gurobi Optimizer Reference
Manual,” 2024. [Online]. Available: https://www.gurobi.com

J. Hoogeveen, “Analysis of Christofides’ heuristic: Some paths
are more difficult than cycles,” Operations Research Letters,
vol. 10, no. 5, pp. 291-295, 1991.

L. Hu, L. Wang, X. Chen, and J. Yang, “Image subtraction in

14

[40]

(47]

(48]

(49]

(501

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

[62]

Fourier space,” The Astrophysical Journal, vol. 936, no. 2, p.
157, 2022.

M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal, vol. 29, no. 5, pp. 390-395,
1986.

F. Kasten and A. T. Young, “Revised optical air mass
tables and approximation formula,” Appl. Opt., vol. 28,
no. 22, pp. 4735-4738, Nov 1989. [Online]. Available:
https://opg.optica.org/ao/abstract.cfm?URI=a0-28-22-4735

J. H. Kim, M. Im, H. M. Lee, S.-W. Chang, H. Choi, and
G. S. H. Paek, “Introduction to the 7-Dimensional Telescope:
Commissioning procedures and data characteristics,” 2024.
[Online]. Available: https://arxiv.org/abs/2406.16462

D. Lang, D. W. Hogg, K. Mierle, M. Blanton, and S. Roweis,
“Astrometry.net: Blind astrometric calibration of arbitrary astro-
nomical images,” The astronomical journal, vol. 139, no. 5, p.
1782, 2010.

Q. Li, S. Wang, C. Xu, X. Ma, M. Xu, A. Zhou, R. Xing,
B. Yang, Z. Zhu, Y. Zhang et al., “Exploring real-time satellite
computing: From energy and thermal perspectives,” in 2024
IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2024, pp.
161-173.

C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal of
the ACM (JACM), vol. 20, no. 1, pp. 46-61, 1973.

A. Loveless, R. Dreslinski, B. Kasikei, and L. T. X. Phan, “Igor:
Accelerating byzantine fault tolerance for real-time systems with
eager execution,” in 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS). 1EEE, 2021,
pp. 360-373.

Isst, “Isst/throughputs: Lsst simulations repository for baseline
evaluation information,” https://github.com/Isst/throughputs/,
accessed: 2025-08-08.

M. Lv, X. Peng, W. Xie, and N. Guan, “Task allocation for
real-time earth observation service with LEO satellites,” in 2022
IEEE Real-Time Systems Symposium (RTSS), 2022, pp. 14-26.
F. Markovié, P. Roux, S. Bozhko, A. V. Papadopoulos, and
B. B. Brandenburg, “CTA: A correlation-tolerant analysis of
the deadline-failure probability of dependent tasks,” in 2023
IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2023, pp.
317-330.

F. Markovi¢, G. von der Briiggen, M. Giinzel, J.-J. Chen, and
B. B. Brandenburg, “A distribution-agnostic and correlation-
aware analysis of periodic tasks,” in 2024 IEEE Real-Time
Systems Symposium (RTSS). 1EEE, 2024, pp. 215-228.

I. Martinez et al., “The cosipy library: COSI’s high-level analysis
software,” in Proc. of 38th Int’l Cosmic Ray Conf., vol. 444,
2023, pp. 858:1-858:8.

P. Mészaros, D. B. Fox, C. Hanna, and K. Murase,
“Multi-messenger astrophysics,” Nature Reviews Physics,
vol. 1, no. 10, pp. 585-599, Oct 2019. [Online]. Available:
https://doi.org/10.1038/s42254-019-0101-z

National Academies of Sciences Engineering and Medicine,
Pathways to Discovery in Astronomy and Astrophysics for
the 2020s. Washington, DC, USA: The National Academies
Press, 2023. [Online]. Available: https://nap.nationalacademie
s.org/catalog/26141/pathways-to-discovery-in-astronomy-and-
astrophysics-for-the-2020s

G. Oganesyan, L. Nava, G. Ghirlanda, A. Melandri, and
A. Celotti, “Prompt optical emission as a signature of synchrotron
radiation in gamma-ray bursts,” Astronomy & Astrophysics, vol.
628, p. A59, 2019.

K. 1. Park, M. Park et al., Fundamentals of probability
and stochastic processes with applications to communications.
Springer, 2018.

A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. P.
Williamson, “Budgeted prize-collecting traveling salesman and



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

minimum spanning tree problems,” Mathematics of Operations
Research, vol. 45, no. 2, pp. 576-590, 2020.

——, “Erratum to “budgeted prize-collecting traveling sales-
man and minimum spanning tree problems”,” Mathematics of
Operations Research, vol. 48, no. 4, pp. 2304-2307, 2023.
“Photometric system — filters used,” Wikipedia, https://en.w
ikipedia.org/wiki/Photometric_system#Filters_used, February
2025, last edited on 27 February 2025; retrieved 8 August 2025.
B. Preiss, T. Pan, and K. Ramohalli, “Development of a figure-
of-merit for space missions,” NASA Space Engineering Research
Center for Utilization of Local Planetary Resources, 1991.

J. Rana, A. Singhal, B. Gadre, V. Bhalerao, and S. Bose,
“An enhanced method for scheduling observations of large sky
error regions for finding optical counterparts to transients,” The
Astrophysical Journal, vol. 838, no. 2, p. 108, 2017.

J. Rana, S. Anand, and S. Bose, “Optimal search strategy
for finding transients in large-sky error regions under realistic
constraints,” The Astrophysical Journal, vol. 876, no. 2, p. 104,
2019.

M. W. Richmond, M. Tanaka, T. Morokuma, S. Sako, R. Ohsawa,
N. Arima, N. Tominaga, M. Doi, T. Aoki, K. Arimatsu et al., “An
optical search for transients lasting a few seconds,” Publications
of the Astronomical Society of Japan, vol. 72, no. 1, p. 3, 2020.
S. Saller, J. Koehler, and A. Karrenbauer, “A systematic review
of approximability results for traveling salesman problems
leveraging the TSP-T3CO definition scheme,” arXiv preprint
arXiv:2311.00604, 2023.

M. W. Savelsbergh, “Local search in routing problems with time
windows,” Annals of Operations research, vol. 4, pp. 285-305,
1985.

L. P. Singer and L. R. Price, “Rapid bayesian position
reconstruction for gravitational-wave transients,” Phys. Rev.
D, vol. 93, p. 024013, Jan 2016. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevD.93.024013

M. Sirianni, M. J. Jee, N. Benitez, J. P. Blakeslee, A. R.
Martel, G. Meurer, M. Clampin, G. De Marchi, H. C. Ford,
R. Gilliland, G. F. Hartig, G. D. Illingworth, J. Mack, and
W. J. McCann, “The photometric performance and calibration
of the hubble space telescope advanced camera for surveys,’

15

(73]

[74]

[75]

[76]

(771

(78]

(791

(80]

(81]

(82]

Publications of the Astronomical Society of the Pacific,
vol. 117, no. 836, p. 1049, sep 2005. [Online]. Available:
https://dx.doi.org/10.1086/444553

M. Sudvarg et al., “A Fast GRB Source Localization Pipeline for
the Advanced Particle-astrophysics Telescope,” in Proc. of 37th
Int’l Cosmic Ray Conf., vol. 395, Jul. 2021, pp. 588:1-588:9.
——, “Parameterized workload adaptation for fork-join tasks
with dynamic workloads and deadlines,” in Proc. of 29th Int’l
Conf. on Embedded and Real-Time Computing Systems and
Applications, 2023, pp. 232-242.

S. Tingay and W. Joubert, “High cadence optical transient
searches using drift scan imaging ii: Event rate upper limits on
optical transients of duration < 21 ms and magnitude < 6.6,”
Publications of the Astronomical Society of Australia, vol. 38,
p. €001, 2021.

J. A. Tomsick, S. E. Boggs, A. Zoglauer, D. Hartmann et al.,
“The Compton Spectrometer and Imager,” 2023. [Online].
Available: https://arxiv.org/abs/2308.12362

P. Vansteenwegen and A. Gunawan, “Orienteering problems,’
EURO advanced tutorials on operational research, vol. 1, 2019.
P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden,
“Orienteering problem variants: Time windows, service times,
and multiple visits,” in Orienteering Problems: Models and
Algorithms for Vehicle Routing Problems with Profits. Berlin,
Heidelberg: Springer, 2011, pp. 23-25.

——, “The orienteering problem: A survey,” European Journal
of Operational Research, vol. 209, no. 1, pp. 1-10, 2011.

V. A. Villar, E. Berger, B. D. Metzger, and J. Guillochon,
“Theoretical models of optical transients. i. a broad exploration of

the duration—luminosity phase space,” The Astrophysical Journal,
vol. 849, no. 1, p. 70, 2017.

E. Waxman and B. Katz, Shock Breakout Theory. Cham:
Springer International Publishing, 2017, pp. 967-1015. [Online].
Available: https://doi.org/10.1007/978-3-319-21846-5_33

D. G. York, J. Adelman, J. E. Anderson Jr, S. F. Anderson,
J. Annis, N. A. Bahcall, J. Bakken, R. Barkhouser, S. Bastian,
E. Berman et al., “The Sloan Digital Sky Survey: Technical
summary,” The Astronomical Journal, vol. 120, no. 3, p. 1579,
2000.

s



