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ABSTRACT

Multi-wavelength observation of gamma-ray bursts (GRBs) requires
real-time interaction among multiple telescopes. A gamma-ray
telescope detects and localizes a GRB in the sky and must then
communicate with an optical telescope to direct the latter toward
the GRB as quickly as possible. We previously developed software
for ADAPT, a suborbital gamma-ray telescope, to localize GRBs in
real time, on a timescale shorter than that of the GRB itself. This
work therefore studies progressive localization, in which ADAPT
computes a series of increasingly accurate location estimates during
a GRB to enable a partner instrument to more rapidly find it. We
describe a modeling and optimization framework to decide when
ADAPT should compute estimated GRB locations to minimize the
time for the partner to find the GRB. Our framework can design
progressive strategies that allow a partner telescope to find a GRB
up to 42% faster than strategies using a single alert.
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1 INTRODUCTION

Multi-wavelength and multi-messenger observations of transient,
high-energy astrophysical phenomena offer rich opportunities to
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probe their underlying physics. Indeed, the “time-domain and multi-
messenger program” was identified among the top scientific pri-
orities for astrophysics in the U.S. National Academies’ Astro2020
Decadal Survey [9]. These observations involve cooperation among
multiple telescopes that can observe a phenomenon almost simul-
taneously, either at different electromagnetic wavelengths or by
detecting different types of signal from it (e.g., photons, neutrinos,
or gravitational waves). However, effectively coordinating these
instruments requires intensive computation that must occur on
the short timescale dictated by the physical processes of interest.
Deciding when and how to perform these computations is essential
to maximize the scientific utility of coordinated observation.

In this paper, we consider the detection and localization of
gamma-ray bursts (GRBs) by high-energy, omnidirectional instru-
ments to enable follow-up observations by optical telescopes. In par-
ticular, we focus on the Antarctic Demonstrator for the Advanced
Particle-astrophysics Telescope (ADAPT), a suborbital gamma-ray
telescope scheduled for a long-duration, high-altitude balloon flight
from Antarctica. The prompt optical counterparts of a short- to
mid-duration GRB might be visible for only seconds, so ADAPT
must accurately localize the GRB in the sky and must issue urgent
alerts to partner instruments to observe it within a short time.

In prior work on ADAPT, we developed a pipeline of algo-
rithms [5, 14, 15] that runs aboard the telescope and can localize
a GRB with an apparent energy density of 1 MeV/cm? to within
5-6 degrees in the sky in only a few hundred milliseconds after a
one-second exposure. On-board computation avoids communica-
tion bandwidth constraints and latency associated with sending
raw detector signals to earth for localization, thereby decreasing
the time to produce an informative alert.

Because localization runs on a shorter timescale (hundreds of
milliseconds) than many GRBs (seconds), ADAPT can compute a
series of location estimates during a GRB, each using progressively
more observations and hence yielding greater accuracy. These esti-
mates can be immediately communicated to the optical partner as
they are computed, improving the partner’s ability to find the GRB
through more frequent interaction. Earlier localization estimates,
while less accurate, may still enable the partner to begin turning
(“slewing”) toward the source immediately, while later, more ac-
curate estimates allow it to course-correct its movement. In the
end, the partner can reach its observing target sooner than if it had
waited for a single, final result from ADAPT. This paradigm leads
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to the following key question: at what time(s) after the beginning of
a GRB should location estimates be computed and communicated so
as to enable the partner to reach its target soonest while respecting
the resource constraints of ADAPT’s limited on-board computing
hardware?

In this work, we develop a methodology to decide when ADAPT
should compute and communicate progressive localization esti-
mates to a partner instrument during an ongoing GRB. We first
develop two types of model using extensive simulation of ADAPT:
a performance model of the computational cost to localize a GRB,
and an accuracy model to estimate the accuracy of GRB localiza-
tion given some number of observations. We use these models to
formulate an optimization task that chooses the times at which
ADAPT should compute and communicate localization estimates to
the partner. We show that progressive localization allows a partner
that can slew at 50°/sec to reach the final estimated location of a
1 MeV/cm? GRB up to 42% sooner compared to waiting to perform
localization until after the GRB ends. Furthermore, our model-based
strategy can improve the utility of interaction among telescopes
while limiting ADAPT’s computational resource usage.

2 BACKGROUND

Gamma-ray bursts (GRBs) result from cataclysmic events in the
deep universe, such as neutron-star collisions and supernovae. Due
to their immense distance from earth, they appear as point-source
emissions at unpredictable locations in the sky. The gamma-ray
signals from short- and medium-duration GRBs may appear for
tens of seconds to less than a second. A GRB’s brightness, or fluence,
quantifies the total gamma-ray energy it deposits in a given area
of the detector; ADAPT can detect and localize bursts of fluence at
least 1 MeV/cm? [5].

2.1 Localizing GRBs in the Sky

The proposed Advanced Particle-astrophysics Telescope (APT) and
its Antarctic Demonstrator (ADAPT), like prior instruments such
as Fermi GBM [8], observe gamma-ray transients whose photon
energies lie in the Compton energy regime (0.1-10 MeV); these
photons interact with ADAPT’s detector primarily via Compton
scattering [4]. ASIC and FPGA logic [11, 13] computes for each
such interaction its 3D position r = (x, y, z) within the detector and
its deposited energy E. For a single gamma-ray photon, the flight
software gathers its list of interactions (r;, E;), collectively referred
to as an event, and communicates this list to the analysis pipeline
via an in-memory event queue.
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Figure 1: ADAPT GRB localization pipeline.

As shown in Figure 1, the analysis pipeline consists of two stages:
reconstruction and localization. Reconstruction converts the interac-
tion list for each photon to a constraint on the source’s location in
the form of a Compton ring — a circle on the unit sphere on which
the direction vector from ADAPT to the GRB source must lie. A
photon’s interactions are converted to a Compton ring by inferring
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their temporal ordering from energetic and kinematic constraints
via the Compton law [2]. In prior work, we developed an accel-
erated reconstruction algorithm [5, 10, 15] that can process >10°
photons per second on ADAPT’s flight computer [12].

Reconstruction continuously accumulates Compton rings in a
Compton ring queue. At any time, the pipeline can perform localiza-
tion by combining the constraints from all accumulated rings to pro-
duce an estimated direction vector to the source. Localization must
contend both with uncertainty in the parameters of each inferred
Compton ring and with spurious rings caused by atmospheric back-
ground radiation unrelated to the GRB. These background rings,
which arise from gamma rays scattered by the atmosphere and also
from energetic protons, neutrons, and electrons that trigger the
detector’s electronics (but cannot be distinguished from incident
gamma rays by signal alone) can account for >50%, and perhaps as
much as 80%, of all rings seen by ADAPT.

As described in [5], ADAPT’s localization algorithm first con-
structs a coarse estimate of the source direction from a random
sample of rings in the queue, then performs iterative least-squares
refinement of this estimate using all available rings to obtain its
final result. We use machine-learning models [6] to select Compton
rings that are likely to be from the GRB rather than the background
and to estimate the uncertainty in the radius of each ring.

2.2 Multi-wavelength Observation

GRBs may exhibit optical counterparts — visible-light signals that
appear at the GRB’s sky location within at most tens of seconds of
the gamma-ray signal. Capturing light from the optical counterpart
provides information about the physical phenomena that gave rise
to the GRB. Capturing earlier light from the counterpart is more
scientifically valuable, so a gamma-ray telescope should direct a
partner instrument toward the GRB’s location as quickly as possible.

ADAPT can communicate an estimated source location to part-
ner instruments as an alert message with negligible (10s of ms)
light-speed delay. While ADAPT’s detector can survey the entire
visible sky at once, an optical telescope typically has a narrow field
of view — at most a few degrees, and often <1° - and so must be
given a precise source direction to observe. When such a telescope
receives a location alert, it immediately slews its detector toward
the source. Modern telescope mounts [7] support slewing a tele-
scope in an arbitrary direction at an angular velocity up to tens of
degrees per second.

ADAPT and APT differ from prior balloon-borne and satellite
gamma-ray instruments in that they are designed to perform lo-
calization entirely with on-board computation. On-board analysis
eliminates communication bottlenecks associated with transferring
raw observations to ground-based computation, enabling localiza-
tion and alert generation that utilizes all available data on sub-
second time scales. This capability makes feasible the progressive
localization strategies that we explore in the next section.

3 MODELING AND OPTIMIZATION
APPROACH
In this section, we first frame the progressive GRB localization prob-

lem as an optimization task, then develop supporting models that
characterize the computational cost and accuracy of localization as
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a function of the number of input Compton rings. While a simple
performance model captures the computational cost of localiza-
tion, more detailed fitting to empirical observations is required to
characterize its accuracy.

3.1 The Progressive Localization Problem

Assume that a GRB occurs over a period of T seconds. ADAPT
detects the burst at time 0, when it first becomes bright enough in
gamma rays to trigger the detector, and continues to observe it until
time T, when the flux of incident gamma rays returns to the baseline
level associated with atmospheric background radiation. In the time
range [0, T], GRB photons enter the instrument at a rate determined
by the (time-dependent) gamma-ray flux. A small fraction of these
photons (those in which the full photon energy is absorbed by
the detector via interactions at two or more separately-resolved
locations) result in a Compton ring. During this period, background
particles may also appear and generate spurious Compton rings.
At time ¢t < T, the instrument has seen ng..(t) rings from the GRB
source and npgg (t) rings from the background.

Over the course of the GRB, ADAPT performs m + 1 successive
localization computations at times ¢ . . . t,5,. The last localization is
always launched at time t,, = T, when the burst ends, and so uses
all available data from it. Earlier localizations may be launched at
any time <T and use only the set of Compton rings available at the
time of launch. A localization launched at time ¢; runs for a length
of time #oc (Msre (ti), Npkg (ti)), after which it emits location alert a;.
Location alerts are direction vectors pointing from ADAPT to the
GRB point-source, expressed in polar coordinates (6, ¢) denoting
co-latitude and longitude, respectively.

Cooperative Observation. ADAPT interacts with an optical tele-
scope, the partner, that seeks to observe the GRB’s location as soon
as possible after it is detected. The partner is initially pointing in
direction sg at time 0 and must eventually slew to point in direction
am. We assume that the partner (on the ground) receives location
alerts from ADAPT (in the upper atmosphere) with negligible com-
munication delay. Even so, the partner will not receive the final
direction ap, until after time T, when ADAPT has processed all
available gamma-ray data from the burst.

To exploit ADAPT’s progressive alerts, the partner operates as
follows. When alert ag from the first localization is received, the
partner starts to slew toward direction ag at a constant angular
velocity (the “slew rate”). When the next alert a; is received, the
partner is pointing in some direction s; between sy and ag (s1 = ao
if it arrives early); it immediately begins to slew from s; toward a;.
This process repeats for all subsequent alerts; in particular, when
the final alert a,, is received, the partner is pointing in direction
sm and must slew to ay,.

Objective and Constraints. The objective of progressive localiza-
tion is to minimize the time until the partner points to the final
computed source direction a,. If we neglect the possibility (rare in
practice) that the partner happens to reach a,;, before ADAPT’s last,
most accurate alert is sent, then the time to reach a;, is determined
by the time to move from sy, to a,,. Hence, we seek to minimize the
angular distance arccos(sy, - am) (hereafter referred to as the loss).
The position s, is itself determined by the slew rate of the partner
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(currently fixed at 50° per second for our experiments), and the
timing and accuracy of prior alerts from localization runs launched
at times tg ... ty—1.

While we can control the times at which localization runs, the
accuracies of the resulting alerts are not deterministic. Even given
a fixed number of Compton rings at time ¢, the resulting location
estimate may have greater or lesser error depending on the charac-
teristics of the photons that generated those rings. Hence, the alert
locations ag . . . am, are random variables, which cause the partner
positions si . .. s, and hence the loss, to be stochastic as well. We
estimate the loss associated with a set of localization run times
to . .. tm by performing multiple trials with different simulated pho-
tons. Each trial produces a set of alerts ag . . . a;, and computes the
partner’s resulting trajectory and its loss. We seek to minimize the
mean loss across all trials.

The localization run times ¢ty . .. t,;—1 are constrained to lie be-
tween 0 and T. Moreover, ADAPT’s limited computational resources
permit only one instance of localization to run at a time; hence, we
require that tj41 > ti+tjoc (Nsre (2), nbkg(ti))+c for 0 < i < m.Here,
c is a “slack” value (100 ms in this work) that allows for inaccuracy
in estimating fc.

Physical Inputs. We solve the progressive localization problem
for a short-duration GRB that is typical of the bursts for which
ADAPT’s detector pipeline is optimized. Our test burst lasts T = 1
second and exhibits a Band energy spectrum [1] with parameters
a = —05, f = —2.35, and Epear = 490 keV. The burst generates
44,600 incident gamma-ray photons, corresponding to an overall flu-
ence of 1 MeV/cm? for the given spectrum. The incident photon flux
varies with time according to a Gaussian curve with p = 508.12 and
o = 233.12. In contrast, background particles arrive at a constant
rate of 4.48 x 10° per second throughout the burst, with particle
types and energies following the background model of [3]. The
total incident flux is the sum of the GRB and background flux.

The characteristics of the Compton rings obtained from incident
gamma rays varies with the actual direction of the burst, due to
the detector’s geometry and algorithmic biases in event processing
and reconstruction. This variation impacts the timing and accuracy
of localization. We therefore tested our approach for three repre-
sentative source directions: normal to the detector (0 = 0°), as well
as (0 =30° ¢ = 45°) and (0 = 60°, ¢ = 45°). In what follows, we
refer to these three cases by their respective 6 angles. To ensure
that the partner instrument is required to slew in all cases, we set
so equal to (60°,45°) for 6 = 0° and to (0°,0°) for 6 € {30°,60°}
as shown in Figure 2.

To generate incident particles and simulate their interactions
with the detector, we used the GEANT4 particle physics simulator
together with a digital twin of the detector hardware [11]. Simu-
lated interactions were fed to ADAPT’s computational pipeline to
produce reconstructed Compton rings, which were then used for
localization as described in [5].

3.2 Modeling the Computational Cost of
Reconstruction and Localization

We modeled the cost of running ADAPT’s analysis pipeline, in-
cluding both reconstruction and localization, on ADAPT’s flight
instrument computer, which includes a quad-core Intel Atom E3845
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Figure 3: Accumulation of Compton rings vs. time.

CPU running at 1.92 GHz. Reconstruction and localization can be
parallelized across multiple CPU cores.

We measured the cost trecon Of reconstruction as a function of
the number of incoming events. Reconstruction received, over 300
trials each simulating a one-second burst, an average of N = 31,746
events caused by gamma-ray photons and background particles
that produced at least one detectable interaction in the detector; the
number of events exhibited minimal variation (1 s.d. = 154). With
one core, the average time trecon(N) to reconstruct all these events
was 134 ms, with a maximum observed time of 140 ms. Because one
core proved more than sufficient to reconstruct incident photons in
real time at the flux dictated by our test burst, we chose a simplified
architecture in which one core was dedicated to reconstruction,
while the other three were used for localization. Future work will
consider alternative resource partitions, particularly for the case of
more intense GRBs (up to 10-fold brighter than our test burst) where
reconstruction of incident photons could become a bottleneck.

Only a small fraction of incident photons yield Compton rings,
due to computational filters that discard low-quality or unrecon-
structable signals. Figure 3 illustrates the number of Compton rings
accumulated from our test burst and from different types of back-
ground particles over 300 random trials. The average number of
rings accumulated in one second was 581 with limited variance (s.d.
= 24).

We measured the cost #joc (1src, tpkg) of localization for values
of ngrc and npkg in the range [10..500], which covers the range of
values seen in our simulations. We used a two-dimensional input,
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S & 38
Latency (ms)
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Figure 4: Localization time fj,. vs. number of source and
background Compton rings.

rather than just the total number of rings ngyc + Nbkgs because local-
ization converges faster when given a higher fraction of rings from
the GRB source vs. the background. For each set of parameters, we
timed 100 localization trials with randomly generated photons. We
then fit the median of these running times for each set of tested
parameters using a radial basis function (RBF) interpolator with
a linear kernel, so as to allow estimation of times for parameters
that were not tested. Figure 4 illustrates these fits assuming dif-
ferent numbers of cores are dedicated to localization; using three
cores exhibits substantial speedup over using just one core. We
used the three-core configuration in all subsequent modeling and
optimization.

To determine computational cost as a function of the time ¢
at which a localization run starts, we estimated the number of
Compton rings available at time ¢ from the curve fits in Figure 3,
then applied the RBF model of Figure 4 to estimate #,.. Although
the number of rings available at a given time ¢ is actually stochastic
rather than fixed, its variance is small enough that the value inferred
from the RBF fit is a useful estimate in practice.
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3.3 Modeling Localization Alert Accuracy

To estimate the accuracy of a localization run starting at time ¢, we
must (1) extract the numbers of GRB and background Compton
rings present at time ¢ from the arrival curves of Figure 3, and (2)
repeatedly simulate incident photons to generate this many rings,
process them through our pipeline, and use the results to estimate
the accuracy of localization. However, the cost of simulation is high
and would be incurred anew for each value of ¢ tested. To reduce
the cost of estimating accuracy, we developed empirically fitted
accuracy distributions as a proxy for simulation.

For each of the ng, Nbkg combinations tested in Figure 4, we
performed 500 trials of localization with sets of Compton rings
derived from simulated photons, recorded the resulting alert di-
rections (0, ¢) for each trial, and then fit parametric distributions
to each of 6 and ¢ (assuming these values were uncorrelated). To
estimate these distributions for input ring counts that were not
explicitly simulated, we linearly interpolated the parameters of the
distributions for the nearest simulated counts.

Before fitting, 6 is normalized to between 0 and 1, while ¢ (in
radians) is shifted by adding =, then normalized to between 0 and 1.
Empirically, we found that using a beta distribution («, f with fixed
loc = 0, scale = 1) for 6 and a shifted generalized normal distribution
(B, loc, scale) for ¢ worked best for bursts at 30° and 60°. However,
for the burst at 0°, the empirical values of 6 were multimodal, with
a peak close to the expected & = 0° and a second, much more
dispersed, peak at larger values of 6. To improve fitting, we divided
the observed density of  into two regions using a two-component
Gaussian mixture model, then separately fit each peak using a beta
distribution limited to its region of support.

Examples of these fits — for proportions of GRB/background
rings similar to those produced by our test burst with true location
0 = 0° - are shown in Figure 5. The estimated value of § becomes
more sharply concentrated near its true value as the number of
GRB-derived Compton rings available to localization increases. The
estimated value of ¢, whose true value is ill-defined when 6 = 0°,
remains near 45°.

4 EXPERIMENTAL RESULTS

To assess the utility of progressive localization and of our modeling
and optimization approach, we used our methods to predict the
losses associated with different progressive strategies for the test
burst and three source directions described in Section 3.1.

We explored the space of progressive strategies in two ways.
First, we varied the number of intermediate localization runs prior
to the final run (at T=1 sec) between 1 and 4, fixing the times for
these runs at evenly spaced times in [0, T] as shown in Table 1.
These strategies did not attempt to perform optimization of the
times. Second, we implemented the constrained optimization of
Section 3.1 using a nonlinear optimizer — SciPy’s implementation
of dual annealing [16]. Constraints were as described above; we fur-
ther constrained all localizations to start at ¢ > 150 ms, since earlier
times had limited numbers of rings and hence very low accuracy.
For each candidate strategy (i.e., set of time points) considered by
the optimizer, we used our computational cost model to infer t},,
for each time point to verify that two localizations do not overlap in
time, and computed the strategy’s average loss over 500 trials with
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source directions sampled from our accuracy model for each time
point. The times for localization chosen by the optimizer for each
true source direction and each number of intermediate localizations
are shown in Table 2.

m 1 2 3 4
500 | 333, 666 | 250, 500, 750 | 200, 400, 600, 800
Table 1: Baseline time points (ms).

True Source Direction
m =0 0 =30° 0 =60°
1 385 465 198
2 166, 573 418, 735 150, 412
3 150, 395, 610 400, 598, 762 150, 291, 514
4 | 151, 320, 457, 619 | 231, 442, 598, 805 | 150, 282, 445, 786

Table 2: Optimized time points (ms) for each source direction.

To assess the validity of our models’ predictions, we compared
the predicted losses computed for each strategy to “ground truth”
losses computed by (much more expensive) direct simulation. For
each strategy, the ground truth loss was the average computed over
100 trials, each of which simulated a set of input gamma rays, ran
the analysis pipeline to compute the set of Compton rings available
at each time point of interest, and finally computed the loss given
this set of rings. We estimated the uncertainty in the modeled and
simulated averages by computing them multiple times (30 times
for modeled loss, 5 times for the more expensive ground-truth loss)
with different random seeds and computing the 95% confidence
t-test interval on the average of these meta-trials.

Figures 6, 7, and 8 compare the ground truth (‘GT”) and modeled
losses for unoptimized (“evenly split”) and optimized strategies for
the test burst with each of the three source directions. In general,
modeled losses did not perfectly reproduce the ground-truth losses,
which is not surprising given the approximations made by our
accuracy model. A more practical question is whether the models’
guidance about which progressive strategy to use matches that
obtained from the more expensive ground-truth estimates.

One form of guidance is the best value for m, the number of
intermediate alerts to generate. According to the ground truth
estimates for the unoptimized strategy, m = 3 suffices for 6 = 0°,
m = 2 for 6 = 30°, and m = 4 for 6 = 60°; these are the largest m for
which the error bars for m and m — 1 do not overlap. The modeled
losses provide similar guidance overall, except for favoring m = 4
for 6 = 0°.

Another form of guidance is whether the optimized strategies
are expected to outperform the baseline. The ground-truth esti-
mates indicate that the optimized strategy does not meaningfully
outperform the unoptimized one for 6 € {0°,30°} but does outper-
form it for 6 = 60°. In contrast, the modeled losses predict that the
optimized strategy is better in all cases, but the predicted differ-
ences in loss are much smaller for 6 € {0°,30°} than for 6 = 60°.
This suggests that the modeled losses provide useful qualitative
guidance for strategy design after accounting for some distortion
introduced by modeling. Moreover, optimization does substantially
reduce the loss in at least one scenario (0 = 60°). Future work will
identify the range of source directions for which optimization is
beneficial.
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Figure 5: Examples of accuracy models inferred for test burst with source location 6 = 0°.
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Figure 6: Losses for source at 6 = 0°.

In all scenarios, progressive localization was able to substantially
reduce the loss compared to the value obtained by a non-progressive
strategy that waits for the final alert a,,. Figure 9 shows the dis-
tributions of losses for optimized strategies with m = 4 for each
true source direction tested. The mean improvements relative to
the loss of a non-progressive strategy (60° for 6 € {0°, 60°}, or 30°
for 6 = 30°) were between 2- and 5-fold. Assuming that the partner
instrument can slew at 50°/sec (the upper limit of modern telescope
mounts), the implied reduction in time to reach the estimated GRB
location is 0.75-1 seconds, as shown in Figure 10. In particular, for
0 = 60°, the implied time reduction is 1s out of 2.4s, or 42%.

5 CONCLUSIONS AND FUTURE WORK

The ADAPT and APT telescopes will perform source localization
and alert generation in real time via on-board computations. The
low latency of these computations opens up new possibilities for

40
I GT Evenly Split
= W Modeled Evenly Split
30 s GT OPT
@ Modeled OPT
=25
= 20
w
S
15
10
5
0
m=1 m=2 m=3 m=4
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Figure 8: Losses for source at 0 = 60°.
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Figure 9: Distribution of ground-truth losses for optimized
strategies with m = 4.
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Figure 10: Latency improvement (ground-truth values) of op-
timized progressive strategies with m = 4 vs. non-progressive
strategy. We assume the non-progressive strategy receives
an alert at t = 1.2s and travels to the true target (within 5° of
the final alert).

how to use them in cooperative observation of high-energy tran-
sient phenomena at multiple wavelengths. We have studied pro-
gressive localization, in which the gamma-ray telescope interacts
repeatedly with a fast-slewing partner instrument in real time dur-
ing a GRB to help the latter turn more swiftly toward the GRB’s
estimated location. We have modeled the computational cost and
accuracy of progressive alerts using ADAPT’s on-board computing
hardware and developed strategies using these models that opti-
mize the times at which localizations are computed. The models
circumvent the need for expensive simulations to assess different
progressive strategies while providing useful guidance for strat-
egy design. Finally, we have quantified the benefit of progressive
localization in several scenarios.

Future work will further develop and assess the utility of pro-
gressive localization. We will improve our modeling approach, in
particular the accuracy models, to more closely match simulation.
Replacing parametric models with a more general fitting approach
such as kernel density estimation should more robustly reproduce
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the observed features of the accuracy distribution. We will also
extend our validation to consider a wider range of source directions
and a broader set of GRB parameters. In particular, we will consider
brighter GRBs for which one CPU core may not be sufficient to
handle reconstruction of all incoming photons; in such a scenario,
we may need to consider different strategies for partitioning the
available hardware between reconstruction and localization. We
anticipate that ADAPT may need to choose dynamically among a
library of precomputed strategies based on the observed gamma-
ray flux and energy spectrum. Finally, we will improve our model
of interaction between ADAPT and its partner to consider longer
delays and more realistic models of telescope movement involving
acceleration and settling time.
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